Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microbiol Resour Announc ; 13(10): e0032824, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39235246

RESUMEN

Streptococcus agalactiae can cause a variety of human diseases, posing a deadly threat especially in the case of infections in newborns. A strain of Streptococcus agalactiae, designated as XM_1, was isolated from a newborn with severe clinical symptoms. Here, the genome sequence of Streptococcus agalactiae strain XM_1 is presented.

2.
Biomed Res Int ; 2021: 9066938, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34540999

RESUMEN

The peroxisome proliferator-activated receptor (PPAR) α/γ-adenosine 5'-monophosphate- (AMP-) activated protein kinase- (AMPK-) sirtuin-1 (SIRT1) pathway and fatty acid metabolism are reported to be involved in influenza A virus (IAV) replication and IAV-pneumonia. Through a cell-based peroxisome proliferator responsive element- (PPRE-) driven luciferase bioassay, we have investigated 145 examples of traditional Chinese medicines (TCMs). Several TCMs, such as Polygonum cuspidatum, Rheum officinale Baillon, and Aloe vera var. Chinensis (Haw.) Berg., were found to possess high activity. We have further detected the anti-IAV activities of emodin (EMO) and its analogs, a group of common important compounds of these TCMs. The results showed that emodin and its several analogs possess excellent anti-IAV activities. The pharmacological tests showed that emodin significantly activated PPARα/γ and AMPK, decreased fatty acid biosynthesis, and increased intracellular ATP levels. Pharmaceutical inhibitors, siRNAs for PPARα/γ and AMPKα1, and exogenous palmitate impaired the inhibition of emodin. The in vivo test also showed that emodin significantly protected mice from IAV infection and pneumonia. Pharmacological inhibitors for PPARα/γ and AMPK signal and exogenous palmitate could partially counteract the effects of emodin in vivo. In conclusion, emodin and its analogs are a group of promising anti-IAV drug precursors, and the pharmacological mechanism of emodin is linked to its ability to regulate the PPARα/γ-AMPK pathway and fatty acid metabolism.


Asunto(s)
Emodina/uso terapéutico , Virus de la Influenza A/efectos de los fármacos , Gripe Humana/tratamiento farmacológico , Células A549 , Adenilato Quinasa/efectos de los fármacos , Adenilato Quinasa/metabolismo , Animales , China , Perros , Emodina/análogos & derivados , Emodina/metabolismo , Ácidos Grasos/metabolismo , Humanos , Virus de la Influenza A/patogenicidad , Metabolismo de los Lípidos , Células de Riñón Canino Madin Darby , Medicina Tradicional China/métodos , PPAR alfa/efectos de los fármacos , PPAR alfa/metabolismo , PPAR gamma/efectos de los fármacos , PPAR gamma/metabolismo , Transducción de Señal/efectos de los fármacos , Sirtuina 1/efectos de los fármacos , Sirtuina 1/metabolismo
3.
Vaccine ; 38(20): 3671-3681, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32247566

RESUMEN

Hand, foot and mouth disease (HFMD) is mainly caused by EV-A71 and CV-A16. An increasing number of cases have been found to be caused by CV-A10, CV-A6, CV-B3 and the outbreaks are becoming increasingly more complex, often accompanied by the prevalence of a variety of enteroviruses. Based on the principle of synthetic peptide vaccines, we applied immune-informatics to design a highly efficient and safe multivalent epitope-based vaccine against EV-A71, CV-A16, CV-A10, CV-A6 and CV-B3. By screening B-cells, HTL and CTL cell antigen epitopes with high conservativity and immunogenicity that have no toxic effect on the host, further analysis confirmed that the vaccine built was IFN-γ inductive and IL-4 non-inductive HTL cell epitopes and had population coverage corresponding to MHC molecular alleles associated with T-cell phenotype. The multivalent enterovirus vaccine was constructed to connect the 50 s ribosomal protein L7/L12 adjuvant and candidate epitopes sequentially through appropriate linkers. Then, the antigenic, allergen and physical properties of the vaccine were evaluated, followed by a secondary structure analysis and tertiary structure modeling, disulfide engineering, refinement and validation. Moreover, the conformational B cell epitope of the vaccine was analyzed. The stability of the TLR4/MD2/Vaccine complex and details at atomic level were investigated by docking and molecular dynamics simulation. Finally, in silico immune simulation and in vivo immune experiments were done. This study provides a high cost-effective method of designing a multivalent enterovirus vaccine protect against a wide range of enterovirus pathogens.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Enfermedad de Boca, Mano y Pie , Biología Computacional , Enterovirus/inmunología , Enterovirus Humano A/inmunología , Infecciones por Enterovirus/prevención & control , Enfermedad de Boca, Mano y Pie/prevención & control , Humanos , Vacunas Combinadas , Vacunas de Subunidad
4.
Cell Biochem Funct ; 38(4): 451-459, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31945194

RESUMEN

ZW10 interactor (Zwint-1) is an important component of the centromere and can recruit the dynamic protein kinase and dynein to promote chromosome movement and regulate the spindle assembly checkpoint (SAC). Zwint-1 activity is tightly regulated during the cell cycle. However, how the stability of Zwint-1 is regulated has not been clarified. Here, we show that the relative levels of Zwint-1 expression gradually decreased with the progression of cell cycling and decline sharply during mitotic exit. Treatment with cycloheximide reduced the levels of Zwint-1 while treatment with MG132 to inhibit endogenous ubiquitin-proteasome elevated the levels of Zwint-1 in HEK293T cells or Hela cells. Such data suggest that Zwint-1 may be degraded by endogenous ubiquitin-proteasome. Furthermore, induction of cell-division cycle protein 20 (Cdc20) overexpression decreased the levels of Zwint-1, which was abrogated by MG132 treatment. In contrast, Cdc20 silencing promoted the accumulation of Zwint-1. in vivo ubiquitination assay revealed that Cdc20 promoted the formation of Zwint-1 and ubiquitin-proteasome conjugates. Cotransfection with Cdc20 and wild-type Zwint-1, but not Zwint-1ΔD-box , reduced the levels of Zwint-1. Immunoprecipitation and western blot analyses showed that Cdc20 interacted with wild-type Zwint-1, but not Zwint-1ΔD-box although both Zwint-1 and Zwint-1ΔD-box overexpression did not induce mitotic arrest. Collectively, our data indicated that Zwint-1 was ubiquitinated by anaphase-promoting complex/cyclosome (APC/C)-Cdc20 in a D-box-dependent manner. Therefore, the APC/C-Cdc20 controls the stability of Zwint-1, ensuring accurate regulation of the spindle assembly during the cell cycling in HEK293T cells.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas Cdc20/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteolisis , Ciclosoma-Complejo Promotor de la Anafase/genética , Proteínas Cdc20/genética , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Nucleares/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo
5.
Front Microbiol ; 10: 2491, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31736922

RESUMEN

Influenza is a major public health concern, and the high mortality rate is largely attributed to secondary bacterial infections. There are several mechanisms through which the virus increases host susceptibility to bacterial colonization, but the micro-environment in lower respiratory tract (LRT) of host, infected with influenza virus, is unclear. To this end, we analyzed the LRT microbiome, transcriptome of lung and metabolome of bronchoalveolar lavage fluid (BALF) in mice inoculated intra-nasally with H1N1 to simulate human influenza, and we observed significant changes in the composition of microbial community and species diversity in the acute (7 days post inoculation or dpi), convalescent (14 dpi) and the recovery (28 dpi) periods. The dominant bacterial class shifted from Alphaproteobacteria to Gammaproteobacteria and Actinobacteria in the infected mice, with a significant increase in the relative abundance of anaerobes and facultative anaerobes like Streptococcus and Staphylococcus. The dysbiosis in the LRT of infected mice was not normalized even in the recovery phase of the infection. In addition, the infected lung transcriptome showed significant differences in the expression levels of genes associated with bacterial infection and immune responses. Finally, the influenza virus infection also resulted in significant changes in the metabolome of the BALF. These alterations in the microbiome, transcriptome, and metabolome of infected lungs were not only appeared at the acute period, but also observed at the recovery period. Furthermore, the infection of influenza virus induced a long-term effect in LRT micro-environmental homeostasis, which may give a chance for the invasion of potential pathogens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA