Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; : 133761, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38987001

RESUMEN

This study aimed to enhance the antioxidant activity of carboxymethyl inulin (CMI) by chemical modification. Therefore, a series of cationic Schiff bases bearing heteroatoms were synthesized and incorporated into CMI via ion exchange reactions, ultimately preparing 10 novel CMI derivatives (CMID). Their structures were confirmed by Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy. The radical scavenging activities and reducing power of inulin, CMI, and CMID were studied. The results revealed a significant enhancement in antioxidant activity upon the introduction of cationic Schiff bases into CMI. Compared to commercially available antioxidant Vc, CMID demonstrated a broader range of antioxidant activities across the four antioxidant systems analyzed in this research. In particular, CMID containing quinoline (6QSCMI) exhibited the strongest hydroxyl radical scavenging activity, with a scavenging rate of 93.60 % at 1.6 mg mL-1. The CMID bearing imidazole (2MSCMI) was able to scavenge 100 % of the DPPH radical at 1.60 mg mL-1. Furthermore, cytotoxicity experiments showed that the products had good biocompatibility. These results are helpful for evaluating the feasibility of exploiting these products in the food, biomedical, and cosmetics industries.

2.
Plant J ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38943629

RESUMEN

Maize is one of the world's most important staple crops, yet its production is increasingly threatened by the rising frequency of high-temperature stress (HTS). To investigate the genetic basis of anther thermotolerance under field conditions, we performed linkage and association analysis to identify HTS response quantitative trait loci (QTL) using three recombinant inbred line (RIL) populations and an association panel containing 375 diverse maize inbred lines. These analyses resulted in the identification of 16 co-located large QTL intervals. Among the 37 candidate genes identified in these QTL intervals, five have rice or Arabidopsis homologs known to influence pollen and filament development. Notably, one of the candidate genes, ZmDUP707, has been subject to selection pressure during breeding. Its expression is suppressed by HTS, leading to pollen abortion and barren seeds. We also identified several additional candidate genes potentially underly QTL previously reported by other researchers. Taken together, our results provide a pool of valuable candidate genes that could be employed by future breeding programs aiming at enhancing maize HTS tolerance.

3.
Int J Biol Macromol ; 267(Pt 1): 131407, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582463

RESUMEN

Succinate dehydrogenase (SDH) is an important inner mitochondrial membrane-bound enzyme involved in redox reactions during the tricarboxylic acid cycle. Therefore, a series of novel chitosan derivatives were designed and synthesized as potential microbicides targeting SDH and precisely characterized by FTIR, 1H NMR and SEM. Their antifungal and antibacterial activities were evaluated against Botrytis cinerea, Fusarium graminearum, Staphylococcus aureus and Escherichia coli. The bioassays revealed that these chitosan derivatives exerted significant antifungal effects, with four of the compounds achieving 100 % inhibition of Fusarium graminearum merely at a concentration of 0.5 mg/mL. Additionally, CSGDCH showed 79.34 % inhibition of Botrytis cinerea at a concentration of 0.1 mg/mL. In vitro antibacterial tests revealed that CSGDCH and CSGDBH have excellent Staphylococcus aureus and Escherichia coli inhibition with MICs of 0.0156 mg/mL and 0.03125 mg/mL, respectively. Molecular docking studies have been carried out to explore the binding energy and binding mode of chitosan and chitosan derivatives with SDH. The analyses indicated that chitosan derivatives targeted the active site of the SDH protein more precisely, disrupting its normal function and ultimately repressing the growth of microbial cells. Furthermore, the chitosan derivatives were also evaluated biologically for antioxidation, and all of these compounds had a greater degree of reducing power, superoxide radical, hydroxyl radical and DPPH-radical scavenging activity than chitosan. This research has the potential for the development of agricultural antimicrobial agents.


Asunto(s)
Antioxidantes , Quitosano , Inhibidores Enzimáticos , Simulación del Acoplamiento Molecular , Bases de Schiff , Succinato Deshidrogenasa , Quitosano/química , Quitosano/farmacología , Succinato Deshidrogenasa/antagonistas & inhibidores , Succinato Deshidrogenasa/metabolismo , Succinato Deshidrogenasa/química , Bases de Schiff/química , Bases de Schiff/farmacología , Bases de Schiff/síntesis química , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/síntesis química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Glicina/química , Glicina/análogos & derivados , Glicina/farmacología , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antiinfecciosos/síntesis química , Staphylococcus aureus/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Escherichia coli/efectos de los fármacos , Antifúngicos/farmacología , Antifúngicos/química , Antifúngicos/síntesis química , Fusarium/efectos de los fármacos , Botrytis/efectos de los fármacos , Técnicas de Química Sintética
4.
Int J Biol Macromol ; 268(Pt 2): 131736, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38653433

RESUMEN

A novel cationic lipoic acid grafted low molecular weight chitosan (LCNE-LA) conjugate was constructed and further self-assembled into GSH-responsive cationic nanocarrier to achieve better antitumor effect by combining encapsulated chemotherapy and oxidative damage induced by ROS. The resultant LCNE-LA cationic micelle exhibited favorable physicochemical properties (low CMC, small size, positively zeta potential and good stability), excellent biosafety and desired redox sensitivity. Next, doxorubicin (Dox) was embedded into hydrophobic core to form stable Dox/LCNE-LA micelle that had superior loading capacity. The GSH-induced release behavior, cellular uptake ability, ROS generation and GSH consumption capacity and in vitro antitumor activity of Dox/LCNE-LA micelle were systematically evaluated. Consequently, Dox/LCNE-LA cationic micelle with positively charged could efficiently enter into cancer cell and redox-sensitive release Dox via disulfide-thiol exchange reaction, which usually expend abundant GSH and disrupt redox homeostasis. Studies further confirmed that Dox/LCNE-LA micelle could increase ROS and reduced GSH content which might cause oxidative damage to tumor cell. Antitumor activity indicated that Dox/LCNE-LA micelle achieved an excellent cancer-killing effect, which might be attributed to combination treatment of Dox and ROS induce oxidative damage. Overall, this research was expected to provide a platform for antitumor treatment by triggering Dox release and promoting ROS generation.


Asunto(s)
Antineoplásicos , Quitosano , Doxorrubicina , Glutatión , Micelas , Peso Molecular , Estrés Oxidativo , Quitosano/química , Quitosano/farmacología , Doxorrubicina/farmacología , Doxorrubicina/química , Glutatión/metabolismo , Humanos , Estrés Oxidativo/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Cationes/química , Portadores de Fármacos/química , Especies Reactivas de Oxígeno/metabolismo , Liberación de Fármacos , Línea Celular Tumoral
5.
Mar Drugs ; 22(1)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38248665

RESUMEN

The present study focused on the design and preparation of acid-responsive benzimidazole-chitosan quaternary ammonium salt (BIMIXHAC) nanogels for a controlled, slow-release of Doxorubicin HCl (DOX.HCl). The BIMIXHAC was crosslinked with sodium tripolyphosphate (TPP) using the ion crosslinking method. The method resulted in nanogels with low polydispersity index, small particle size, and positive zeta potential values, indicating the good stability of the nanogels. Compared to hydroxypropyl trimethyl ammonium chloride chitosan-Doxorubicin HCl-sodium tripolyphosphate (HACC-D-TPP) nanogel, the benzimidazole-chitosan quaternary ammonium salt-Doxorubicin HCl-sodium tripolyphosphate (BIMIXHAC-D-TPP) nanogel show higher drug encapsulation efficiency and loading capacity (BIMIXHAC-D-TPP 93.17 ± 0.27% and 31.17 ± 0.09%), with acid-responsive release profiles and accelerated release in vitro. The hydroxypropyl trimethyl ammonium chloride chitosan-sodium tripolyphosphate (HACC-TPP), and benzimidazole-chitosan quaternary ammonium salt-sodium tripolyphosphate (BIMIXHAC-TPP) nanogels demonstrated favorable antioxidant capability. The assay of cell viability, measured by the MTT assay, revealed that nanogels led to a significant reduction in the cell viability of two cancer cells: the human lung adenocarcinoma epithelial cell line (A549) and the human breast cancer cell line (MCF-7). Furthermore, the BIMIXHAC-D-TPP nanogel was 2.96 times less toxic than DOX.HCl to the mouse fibroblast cell line (L929). It was indicated that the BIMIXHAC-based nanogel with enhanced antioxidant and antitumor activities and acidic-responsive release could serve as a potential nanocarrier.


Asunto(s)
Quitosano , Neoplasias Pulmonares , Polietilenglicoles , Polietileneimina , Polifosfatos , Humanos , Animales , Ratones , Nanogeles , Antioxidantes/farmacología , Cloruro de Amonio , Bencimidazoles , Doxorrubicina/farmacología , Compuestos de Amonio Cuaternario/farmacología
6.
Int J Biol Macromol ; 261(Pt 1): 129816, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38290626

RESUMEN

To improve the antioxidant activity, sulfhydryl groups (-SH) were introduced into chitosan. Acylated chitosan derivatives, chitosan cationic salt derivatives, hydroxypropyl trimethylammonium chloride chitosan quaternary ammonium salt (HACC) derivatives and N,N,N-trimethyl chitosan iodine (TMC) derivatives were obtained. The chitosan derivatives were characterized by FTIR and 1H NMR to confirm the successful synthesis. Ellman's reagent was used to determine that the compound contained free sulfhydryl groups. The water solubility and thermal stability of chitosan and derivatives were evaluated. The antioxidant activities of the derivatives were verified, including DPPH radical scavenging activity, superoxide anion radical scavenging activity and reducing power activity. The novel chitosan derivatives showed excellent antioxidant activities. Toxicity assay used L929 cells proved that the derivatives had no significant toxic. The results showed that the chitosan derivatives bearing sulfhydryl groups described in this paper has a certain antioxidant effect, which provides a practical approach for further study of chitosan.


Asunto(s)
Antioxidantes , Quitosano , Antioxidantes/farmacología , Antioxidantes/química , Quitosano/química , Espectroscopía de Resonancia Magnética , Compuestos de Amonio Cuaternario/farmacología , Compuestos de Amonio Cuaternario/química , Solubilidad
7.
Plant Biotechnol J ; 22(5): 1269-1281, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38073308

RESUMEN

A fast evolution within mitochondria genome(s) often generates discords between nuclear and mitochondria, which is manifested as cytoplasmic male sterility (CMS) and fertility restoration (Rf) system. The maize CMS-C trait is regulated by the chimeric mitochondrial gene, atp6c, and can be recovered by the restorer gene ZmRf5. Through positional cloning in this study, we identified the nuclear restorer gene, ZmRf5, which encodes a P-type pentatricopeptide repeat (PPR) family protein. The over-expression of ZmRf5 brought back the fertility to CMS-C plants, whereas its genomic editing by CRISPR/Cas9 induced abortive pollens in the restorer line. ZmRF5 is sorted to mitochondria, and recruited RS31A, a splicing factor, through MORF8 to form a cleaving/restoring complex, which promoted the cleaving of the CMS-associated transcripts atp6c by shifting the major cleavage site from 480th nt to 344 th nt for fast degradation, and preserved just right amount of atp6c RNA for protein translation, providing adequate ATP6C to assembly complex V, thus restoring male fertility. Interestingly, ATP6C in the sterile line CMo17A, with similar cytology and physiology changes to YU87-1A, was accumulated much less than it in NMo17B, exhibiting a contrary trend in the YU87-1 nuclear genome previously reported, and was restored to normal level in the presence of ZmRF5. Collectively these findings unveil a new molecular mechanism underlying fertility restoration by which ZmRF5 cooperates with MORF8 and RS31A to restore CMS-C fertility in maize, complemented and perfected the sterility mechanism, and enrich the perspectives on communications between nucleus and mitochondria.


Asunto(s)
Fertilidad , Zea mays , Zea mays/genética , Factores de Empalme de ARN , Citoplasma/genética , Fertilidad/genética , Mitocondrias/genética , Infertilidad Vegetal/genética
8.
Int J Biol Macromol ; 257(Pt 1): 128590, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38056756

RESUMEN

pH-responsive nanogels have played an increasingly momentous role in tumor treatment. The focus of this study is to design and develop pH-responsive benzimidazole-chitosan quaternary ammonium salt (BIMIXHAC) nanogels for the controlled release of doxorubicin hydrochloride (DOX) while enhancing its hydrophilicity. BIMIXHAC is crosslinked with carboxymethyl chitosan (CMC), hyaluronic acid sodium salt (HA), and sodium alginates (SA) using an ion crosslinking method. The chemical structure of chitosan derivatives was verified by 1H NMR and FT-IR techniques. Compared to hydroxypropyl trimethyl ammonium chloride chitosan (HACC)-based nanogels, BIMIXHAC-based nanogels exhibit better drug encapsulation efficiency and loading capacity (BIMIXHAC-D-HA 91.76 %, and 32.23 %), with pH-responsive release profiles and accelerated release in vitro. The series of nanogels formed by crosslinking with three different polyanionic crosslinkers have different particle size potentials and antioxidant properties. BIMIXHAC-HA, BIMIXHAC-SA and BIMIXHAC-CMC demonstrate favorable antioxidant capability. In addition, cytotoxicity tests showed that BIMIXHAC-based nanogels have high biocompatibility. BIMIXHAC-based nanogels exhibit preferable anticancer effects on MCF-7 and A549 cells. Furthermore, the BIMIXHAC-D-HA nanogel was 2.62 times less toxic than DOX to L929 cells. These results suggest that BIMIXHAC-based nanogels can serve as pH-responsive nanoplatforms for the delivery of anticancer drugs.


Asunto(s)
Antioxidantes , Quitosano , Nanogeles , Antioxidantes/farmacología , Quitosano/química , Liberación de Fármacos , Espectroscopía Infrarroja por Transformada de Fourier , Doxorrubicina/farmacología , Doxorrubicina/química , Concentración de Iones de Hidrógeno , Sodio , Portadores de Fármacos/química
9.
Mar Drugs ; 21(12)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38132927

RESUMEN

A total of 16 novel carboxymethyl chitosan derivatives bearing quinoline groups in four classes were prepared by different synthetic methods. Their chemical structures were confirmed by Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and elemental analysis. The antioxidant experiment results in vitro (including DPPH radical scavenging ability, superoxide anion radical scavenging ability, hydroxyl radical scavenging ability, and ferric reducing antioxidant power) demonstrated that adding quinoline groups to chitosan (CS) and carboxymethyl chitosan (CMCS) enhanced the radical scavenging ability of CS and CMCS. Among them, both N, O-CMCS derivatives and N-TM-O-CMCS derivatives showed DPPH radical scavenging over 70%. In addition, their scavenging of superoxide anion radicals reached more than 90% at the maximum tested concentration of 1.6 mg/mL. Moreover, the cytotoxicity assay was carried out on L929 cells by the MTT method, and the results indicated that all derivatives showed no cytotoxicity (cell viability > 75%) except O-CMCS derivative 1a, which showed low cytotoxicity at 1000 µg/mL (cell viability 50.77 ± 4.67%). In conclusion, the carboxymethyl chitosan derivatives bearing quinoline groups showed remarkable antioxidant ability and weak cytotoxicity, highlighting their potential use in food and medical applications.


Asunto(s)
Quitosano , Quinolinas , Antioxidantes/farmacología , Antioxidantes/química , Superóxidos/química , Quitosano/química , Espectroscopía de Resonancia Magnética , Espectroscopía Infrarroja por Transformada de Fourier , Quinolinas/farmacología
10.
Mar Drugs ; 21(10)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37888470

RESUMEN

As a promising biological material, chitooligosaccharide (COS) has attracted increasing attention because of its unique biological activities. In this study, fourteen novel phenolic acid functional COS derivatives were successfully prepared using two facile methods. The structures of derivatives were characterized by FT-IR and 1H NMR spectra. The in vitro antioxidant activity experiment results demonstrated that the derivatives presented stronger 1,1-Diphenyl-2-picryl-hydrazyl (DPPH), superoxide, hydroxyl radical scavenging activity and reducing power, especially the N,N,N-trimethylated chitooligosaccharide gallic acid salt (GLTMC), gallic acid esterified N,N,N-trimethylated chitooligosaccharide (GL-TMC) and caffeic acid N,N,N-trimethylated chitooligosaccharide (CFTMC) derivatives. Furthermore, the antifungal assay was carried out and the results indicated that the salicylic acid esterified N,N,N-trimethylated chitooligosaccharide (SY-TMC) had much better inhibitory activity against Botrytis cinerea and Fusarium graminearum. Additionally, the results of the bacteriostasis experiment showed that the caffeic acid esterified N,N,N-trimethylated chitooligosaccharide (CF-TMC) had the potential ability to inhibit Escherichia coli and Staphylococcus aureus bacteria. Altogether, this study may provide a neoteric method to produce COS derivatives with significantly increased biological activities, which have potential use in food, medicine, and health care products and other related industries.


Asunto(s)
Antioxidantes , Quitosano , Antioxidantes/farmacología , Antioxidantes/química , Antifúngicos/farmacología , Antifúngicos/química , Espectroscopía Infrarroja por Transformada de Fourier , Quitosano/química , Quitina/farmacología , Ácido Gálico , Antibacterianos/farmacología , Antibacterianos/química
11.
Int J Biol Macromol ; 253(Pt 2): 126691, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37673148

RESUMEN

Natural polysaccharides are abundant and renewable resource, but their applications are hampered by limited biological activity. Chemical modification can overcome these drawbacks by altering their structure. Three series of polysaccharide derivatives with coumarins were synthesized to obtain polysaccharide derivatives with enhanced biological activity. The biological activities were tested, including antioxidant property, antifungal property, and antibacterial property. Based on the results, the inhibitory properties of the coumarin-polysaccharide derivatives were significantly improved over the raw polysaccharide. The IC50 of the inhibition of DPPH, ABTS•+, and superoxide (O2•-) radical-scavenging was 0.06-0.15 mg/mL, 2.3-15.9 µg/mL, and 0.03-0.25 mg/mL, respectively. Compared with the raw polysaccharides, coumarin- polysaccharide derivatives exhibited higher efficacy in inhibiting the growth of tested phytopathogens, showing inhibitory indices of 60.0-93.6 % at 1.0 mg/mL. Chitosan derivatives with methyl and chlorine (Compound 10B and 10C) exhibited significant antibacterial activity against S. aureus (MIC = 31.2 µg/mL), E. coli (MIC = 7.8 µg/mL), and V. harveyi (MIC = 15.6 µg/mL), respectively. The results of the cytotoxicity assay showed no observed cytotoxicity when the RAW 264.7 cells were incubated with the synthesized polysaccharide derivatives at the tested concentrations.


Asunto(s)
Cumarinas , Staphylococcus aureus , Cumarinas/farmacología , Cumarinas/química , Escherichia coli , Antioxidantes/farmacología , Antioxidantes/química , Antibacterianos/farmacología , Antibacterianos/química , Polisacáridos/farmacología
12.
Carbohydr Res ; 533: 108935, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37717482

RESUMEN

In this work, a series of water-soluble fluorine-functionalized chitooligosaccharide derivatives were synthesized by conjugating nicotinic acid to chitooligosaccharide via nicotinylation reaction, followed by nucleophilic reaction with ethyl bromide, benzyl bromide and fluorobenzyl bromides. Synthesized derivatives were identified structurally by Fourier Transform Infrared Spectroscopy and Nuclear Magnetic Resonance. In addition, the antibacterial activities of chitooligosaccharide derivatives against several disease-causing bacteria were assessed by the broth dilution method and Kirby-Bauer method, the mycelium growth rate method was used to assessing the antifungal properties of samples against three plant-threatening fungi. Among the chitooligosaccharide derivatives, those containing benzyl or fluorobenzyl exhibited noteworthy antimicrobial activity. Specifically, the chitooligosaccharide derivative containing 2,3,4-trifluorobenzyl displayed remarkable antimicrobial activity, with an inhibition index of 84.35% against Botryis cinerea at a concentration of 1.0 mg/mL. Additionally, its MIC value against Staphylococcus aureus was found to be 0.03125 mg/mL, while the MBC value was determined to be 0.0625 mg/mL. The findings of the study revealed that the incorporation of pyridinium cations and fluorine into the chitooligosaccharide backbone may play a critical role in strengthening its ability to combat harmful microorganisms. Furthermore, the cytotoxicities of chitooligosaccharide derivatives against Huvec cells were evaluated through MTT assay, and all samples were not toxic. As a consequence, the water-soluble fluorine-functionalized chitooligosaccharide derivatives possessed rapid microbicidal properties and good biocompatibility, which provided promising prospects for the development of a more effective and environmentally friendly antimicrobial agent.


Asunto(s)
Antibacterianos , Flúor , Antibacterianos/farmacología , Antifúngicos/farmacología , Bromuros , Quitina
13.
Plant Physiol ; 193(4): 2430-2441, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37590954

RESUMEN

Endosperm cell number is critical in determining grain size in maize (Zea mays). Here, zma-miR159 overexpression led to enlarged grains in independent transgenic lines, suggesting that zma-miR159 contributes positively to maize grain size. Targeting of ZmMYB74 and ZmMYB138 transcription factor genes by zma-miR159 was validated using 5' RACE and dual-luciferase assay. Lines in which ZmMYB74 was knocked out using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) presented a similar enlarged grain phenotype as those with zma-miR159 overexpression. Downstream genes regulating cell division were identified through DNA affinity purification sequencing using ZmMYB74 and ZmMYB138. Our results suggest that zma-miR159-ZmMYB modules act as an endosperm development hub, participating in the division and proliferation of endosperm cells.


Asunto(s)
Factores de Transcripción , Zea mays , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Zea mays/genética , Zea mays/metabolismo , Endospermo/genética , Endospermo/metabolismo , Grano Comestible/genética , Grano Comestible/metabolismo , Secuencia de Bases
14.
Int J Biol Macromol ; 247: 125850, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37460067

RESUMEN

In this study, nine chitosan derivatives containing aromatic five-membered heterocycles were prepared and the effects of different grafting methods on the biological activities of chitosan derivatives were investigated. The structures of all the compounds were characterized by Fourier Transform Infrared (FT-IR) spectroscopy and Nuclear Magnetic Resonance (NMR) spectroscopy, while the antioxidant, antifungal and antibacterial activities of the chitosan derivatives were tested. The experimental data suggested that the chitosan derivatives had outstanding inhibitory ability against Fusarium graminearum, Fusarium oxysporum f.sp.cucumbrum, Staphylococcus aureus and Escherichia coli. At the same time, some of the compounds showed strong scavenging ability against DPPH radical and superoxide radical. Cytotoxicity experiments have demonstrated that some chitosan derivatives are non-toxic to L929 cells. More importantly, compared to chitosan, these chitosan derivatives have good water solubility and can be used as potential polymers for antifungal and antibacterial biomaterials in agriculture.


Asunto(s)
Antiinfecciosos , Quitosano , Antioxidantes/farmacología , Antioxidantes/química , Antifúngicos/farmacología , Antifúngicos/química , Quitosano/química , Espectroscopía Infrarroja por Transformada de Fourier , Antiinfecciosos/farmacología , Antibacterianos/farmacología
15.
Int J Biol Macromol ; 247: 125849, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37460070

RESUMEN

Amphiphilic low molecular weight chitosan-lipoic acid (LC-LA) conjugates with different degrees of substitution (DS) of LA were synthesized by N, N'­carbonyldiimidazole (CDI) catalysis to self-assemble into redox-sensitive micelles. Critical micelle concentration (CMC), size, zeta potential, biocompatibility and redox-sensitive behavior of blank micelles were investigated. The results indicated that blank micelles with low CMC, nanoscale size and positive zeta potential showed excellent biocompatibility and redox-sensitive behavior. Doxorubicin (Dox) loaded micelles were prepared by encapsulating Dox into blank micelles. The loading ability, trigger-release behavior, antitumor activity and cellular uptake of Dox loaded micelles were studied. The results demonstrated that Dox loaded micelles with superior loading ability exhibited redox-trigger behavior, strong antitumor activity and increased cellular uptake efficiency against A549 cell. Besides, the effect of DS of LA on above properties was estimated. An increase in DS of LA reduced the CMC and cumulative release amount of Dox, but improved the loading efficiency, antitumor activity, and cellular uptake of Dox loaded micelles, which resulted from stronger interaction of hydrophobic groups in micelles with the DS of LA increased. Overall, self-assembled LC-LA micelles with good biosecurity and redox-sensitive behavior hold promising application prospects in Dox delivery and improving cancer therapeutic effect of Dox.


Asunto(s)
Quitosano , Ácido Tióctico , Micelas , Quitosano/química , Ácido Tióctico/química , Portadores de Fármacos/química , Peso Molecular , Doxorrubicina/farmacología , Doxorrubicina/química , Oxidación-Reducción , Sistemas de Liberación de Medicamentos/métodos , Concentración de Iones de Hidrógeno
16.
Food Chem ; 429: 136886, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37499506

RESUMEN

New amphiphilic low molecular weight chitosan-graft-nicotinic acid bearing decyl groups (LCND) was synthesized by two-step reaction and spontaneously assembled into cationic micelle by ultra-sonication method to improve water solubility and photostability properties of α-tocopherol. The chemical structure of LCND was characterized and physical properties of cationic micelle were evaluated. Results displayed that cationic micelle exhibited strong self-assemble ability with nanoscale spherical morphology and showed best loading ability with loading content of 18.50% when the feeding ratio of LCND to α-tocopherol reached 10:3. Meanwhile, the greatly enhanced water solubility, photostability and sustained release behavior of α-tocopherol in cationic micelle were observed. The cumulative release of α-tocopherol in cationic micelle reached up 82.18% within 96 h while free α-tocopherol was completely released within 10 h. Additionally, release kinetics models were also fitted. The LCND cationic micelle could be promising nanocarrier for improving the physicochemical properties of α-tocopherol in food fields.


Asunto(s)
Quitosano , Micelas , alfa-Tocoferol/química , Solubilidad , Quitosano/química , Preparaciones de Acción Retardada , Peso Molecular , Portadores de Fármacos/química , Agua/química , Tamaño de la Partícula
17.
Carbohydr Polym ; 315: 120978, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37230617

RESUMEN

Herein, imidazole acids grafted chitosan derivatives were synthesized, including HACC, HACC derivatives, TMC, TMC derivatives, amidated chitosan and amidated chitosan bearing imidazolium salts. The prepared chitosan derivatives were characterized by FT-IR and 1H NMR. The tests evaluated the biological antioxidant, antibacterial, and cytotoxic activities of chitosan derivatives. The antioxidant capacity (DPPH radical, superoxide anion radical and hydroxyl radical) of chitosan derivatives was 2.4-8.3 times higher than that of chitosan. The antibacterial capacity against E. coli and S. aureus of cationic derivatives (HACC derivatives, TMC derivatives, and amidated chitosan bearing imidazolium salts) was more active than only imidazole-chitosan (amidated chitosan). In particular, the inhibition effect of HACC derivatives on E. coli was 15.625 µg/mL. Moreover, the series of chitosan derivatives bearing imidazole acids showed certain activity against MCF-7 and A549 cells. The present results suggest that the chitosan derivatives in this paper seem to be promising carrier materials for use in drug delivery systems.


Asunto(s)
Antioxidantes , Quitosano , Antioxidantes/farmacología , Antioxidantes/química , Quitosano/química , Staphylococcus aureus , Espectroscopía Infrarroja por Transformada de Fourier , Escherichia coli , Sales (Química) , Superóxidos , Imidazoles/farmacología , Antibacterianos/farmacología , Antibacterianos/química
18.
Mar Drugs ; 22(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38248643

RESUMEN

Three redox-sensitive nanocarriers were rationally designed based on amphiphilic low molecular weight chitosan-cystamine-octylamine/dodecylamin/cetylamine (LC-Cys-OA, LC-Cys-DA, LC-Cys-CA) conjugates containing disulfide linkage for maximizing therapeutic effect by regulating hydrophobic interaction. The resultant spherical micelles had the characteristics of low CMC, suitable size, excellent biosafety and desired stability. The drug-loaded micelles were fabricated by embedding doxorubicin (Dox) into the hydrophobic cores. The effect of hydrophobic chain lengths of amphiphilic conjugates on encapsulation capacity, redox sensitivity, trigger-release behavior, cellular uptake efficacy, antitumor effect and antimigratory activity of Dox-loaded micelles was systematically investigated. Studies found that Dox-loaded LC-Cys-CA micelle had superior loading capacity and enhanced redox sensitivity compared with the other two micelles. Release assay indicated that the three Dox-loaded micelles maintained sufficiently stability in normal blood circulation but rapidly disintegrated in tumor cells. More importantly, the LC-Cys-CA micelle with a longer hydrophobic chain length exhibited a higher accumulative Dox release percentage than the other two micelles. Additionally, an increase in hydrophobic chain lengths of amphiphilic conjugates improved cellular uptake efficiency, antitumor effect and antimigration activity of Dox-loaded micelles, which could be explained by enhanced loading ability and redox sensitivity. Our research was expected to provide a viable platform for achieving a desired therapeutic efficacy via the alteration of hydrophobic interaction.


Asunto(s)
Quitosano , Micelas , Liberación de Fármacos , Sistemas de Liberación de Medicamentos , Doxorrubicina/farmacología , Oxidación-Reducción
19.
Mar Drugs ; 20(11)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36354991

RESUMEN

Chitin is a natural renewable and useful biopolymer limited by its insolubility; chemical derivatization can enhance the solubility and bioactivity of chitin. The purpose of this study was to synthesize novel water-soluble chitin derivatives, sulfo-chitin (SCT) and sulfopropyl-chitin (SPCT), as antioxidant and antifungal agents. The target derivatives were characterized by means of elemental analysis, FTIR, 13C NMR, TGA and XRD. Furthermore, the antioxidant activity of the chitin derivatives was estimated by free radical scavenging ability (against DPPH-radical, hydroxyl-radical and superoxide-radical) and ferric reducing power. In addition, inhibitory effects against four fungi were also tested. The findings show that antioxidant abilities and antifungal properties were in order of SPCT > SCT > CT. On the basis of the results obtained, we confirmed that the introduction of sulfonated groups on the CT backbone would help improve the antioxidant and antifungal activity of CT. Moreover, its efficacy as an antioxidant and antifungal agent increased as the chain length of the substituents increased. This derivatization strategy might provide a feasible way to broaden the utilization of chitin. It is of great significance to minimize waste and realize the high-value utilization of aquatic product wastes.


Asunto(s)
Antioxidantes , Quitosano , Antioxidantes/farmacología , Antioxidantes/química , Antifúngicos/farmacología , Antifúngicos/química , Quitosano/química , Quitina/química , Hongos , Agua
20.
Mar Drugs ; 20(11)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36355011

RESUMEN

We successfully prepared a series of l-arginine Schiff bases acylated chitosan derivatives, aiming to improve the antioxidant activity and antimicrobial activity of chitosan by introducing a furan ring, pyridine ring, and l-arginine structure. The accuracy of the structures of ten compounds was characterized by FT-IR and 1H NMR. In terms of DPPH radical scavenging activity, except for compound CR3PCA, the scavenging rate of other compounds was higher than chitosan, especially CRCF and CRBF had strong scavenging abilities. At the same time, in the superoxide-radical scavenging activity assay, CRCF, CRBF, CR3PCA, CR2C3PCA, and CR2B3PCA were comparable to positive control at 1.60 mg/mL. Simultaneously, CRFF, CRCF, and CRBF had a certain inhibitory effect on Botrytis cinerea. Furthermore, the inhibitory effect of CRFF, CRCF, and CR3PCA on Staphylococcus aureus was very well, close to the positive control at 1.00 mg/mL. CRCF and CR2B3PCA showed better inhibitory effects on Escherichia coli than other compounds. The MTT assay was used to determine the cytotoxicity of the chitosan derivatives, which proved their safety to fibroblast cells. In summary, the study indicated that some of these compounds have the potential for further development and utilization in the preparation of antioxidants and antimicrobial agents.


Asunto(s)
Antiinfecciosos , Quitosano , Bases de Schiff/farmacología , Bases de Schiff/química , Quitosano/química , Antioxidantes/farmacología , Antioxidantes/química , Pruebas de Sensibilidad Microbiana , Espectroscopía Infrarroja por Transformada de Fourier , Antifúngicos/farmacología , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antibacterianos/farmacología , Escherichia coli , Arginina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...