Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
iScience ; 26(8): 107321, 2023 Aug 18.
Article En | MEDLINE | ID: mdl-37554468

Neurological diseases are one of the most pressing issues in modern times worldwide. It thus possesses explicit attention from researchers and medical health providers to guard public health against such an expanding threat. Various treatment modalities have been developed in a remarkably short time but, unfortunately, have yet to lead to the wished-for efficacy or the sought-after clinical improvement. The main hurdle in delivering therapeutics to the brain has always been the blood-brain barrier which still represents an elusive area with lots of mysteries yet to be solved. Meanwhile, nanotechnology has emerged as an optimistic platform that is potentially holding the answer to many of our questions on how to deliver drugs and treat CNS disorders using novel technologies rather than the unsatisfying conventional old methods. Nanocarriers can be engineered in a way that is capable of delivering a certain therapeutic cargo to a specific target tissue. Adding to this mind-blowing nanotechnology, the revolutionizing gene-altering biologics can have the best of both worlds, and pave the way for the long-awaited cure to many diseases, among those diseases thus far are Alzheimer's disease (AD), brain tumors (glioma and glioblastoma), Down syndrome, stroke, and even cases with HIV. The review herein collects the studies that tested the mixture of both sciences, nanotechnology, and epigenetics, in the context of brain therapeutics using three main categories of gene-altering molecules (siRNA, miRNA, and CRISPR) with a special focus on the advancements regarding the new favorite, intranasal route of administration.

2.
Molecules ; 28(3)2023 Jan 28.
Article En | MEDLINE | ID: mdl-36770950

Central nervous system disorders, especially neurodegenerative diseases, are a public health priority and demand a strong scientific response. Various therapy procedures have been used in the past, but their therapeutic value has been insufficient. The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier is two of the barriers that protect the central nervous system (CNS), but are the main barriers to medicine delivery into the CNS for treating CNS disorders, such as brain tumors, Parkinson's disease, Alzheimer's disease, and Huntington's disease. Nanotechnology-based medicinal approaches deliver valuable cargos targeting molecular and cellular processes with greater safety, efficacy, and specificity than traditional approaches. CNS diseases include a wide range of brain ailments connected to short- and long-term disability. They affect millions of people worldwide and are anticipated to become more common in the coming years. Nanotechnology-based brain therapy could solve the BBB problem. This review analyzes nanomedicine's role in medication delivery; immunotherapy, chemotherapy, and gene therapy are combined with nanomedicines to treat CNS disorders. We also evaluated nanotechnology-based approaches for CNS disease amelioration, with the intention of stimulating the immune system by delivering medications across the BBB.


Central Nervous System Diseases , Nanoparticles , Humans , Nanomedicine , Drug Delivery Systems/methods , Brain , Blood-Brain Barrier , Central Nervous System Diseases/drug therapy , Nanoparticles/therapeutic use
3.
Sci Adv ; 7(41): eabg4167, 2021 Oct 08.
Article En | MEDLINE | ID: mdl-34623912

Chemotherapy can effectively reduce the leukemic burden and restore immune cell production in most acute myeloid leukemia (AML) cases. Nevertheless, endogenous immunosurveillance usually fails to recover after chemotherapy, permitting relapse. The underlying mechanisms of this therapeutic failure have remained poorly understood. Here, we show that abnormal IL-36 production activated by NF-κB is an essential feature of mouse and human leukemic progenitor cells (LPs). Mechanistically, IL-36 directly activates inflammatory monocytes (IMs) in bone marrow, which then precludes clearance of leukemia mediated by CD8+ T cells and facilitates LP growth. While sparing IMs, common chemotherapeutic agents stimulate IL-36 production from residual LPs via caspase-1 activation, thereby enabling the persistence of this immunosuppressive IL-36­IM axis after chemotherapy. Furthermore, IM depletion by trabectedin, with chemotherapy and PD-1 blockade, can synergistically restrict AML progression and relapse. Collectively, these results suggest inhibition of the IL-36­IM axis as a potential strategy for improving AML treatment.

4.
Yao Xue Xue Bao ; 46(11): 1332-7, 2011 Nov.
Article Zh | MEDLINE | ID: mdl-22260024

This paper is to report the study of resveratrol-induced apoptosis and its mechanisms in MCF-7 cells. MTT assay was performed to assess the cytotoxicity of resveratrol on MCF-7 cells. Hoechst 33258 staining was used to observe cellular morphologic changes in apoptosis. Apoptosis was measured by flow cytometric analysis and the protein expression was examined by Western blotting analysis. The results indicated that resveratrol could inhibit MCF-7 cell growth in a time- and concentration-dependent manner. Remarkable morphologic changes in the cells after 60 micromol L(-1) resveratrol treatment, including cell nuclear shrinkage, DNA condensation and apoptotic bodies, were observed by Hoechst 33258 staining. Resveratrol could induce apoptosis and activate p38 and p53 in a time dependent manner in MCF-7 cells. In addition, the cell growth inhibitory ratio and the apoptotic ratio of resveratrol-treated group decreased markedly by the p38 MAPK inhibitor SB203580 or p53 inhibitor pifithrin-alpha. Further experiments confirmed that resveratrol-induced p53 activation was reduced by SB203580 whereas the activation of p38 was not affected by pifithrin-alpha. In conclusion, resveratrol induced apoptosis in MCF-7 cells could be through activating p38-p53 signal pathway.


Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Signal Transduction , Stilbenes/pharmacology , Tumor Suppressor Protein p53/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Antineoplastic Agents, Phytogenic/administration & dosage , Benzothiazoles/pharmacology , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Humans , Imidazoles/pharmacology , MCF-7 Cells , Pyridines/pharmacology , Resveratrol , Stilbenes/administration & dosage , Toluene/analogs & derivatives , Toluene/pharmacology , Tumor Suppressor Protein p53/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
...