Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mater Today Bio ; 28: 101188, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39221210

RESUMEN

Paper based point-of-care (PoC) detection platforms applying lateral flow assays (LFAs) have gained paramount approval in the diagnostic domain as well as in environmental applications owing to their ease of utility, low cost, and rapid signal readout. It has centralized the aspect of self-evaluation exhibiting promising potential in the last global pandemic era of Covid-19 implementing rapid management of public health in remote areas. In this perspective, the present review is focused towards landscaping the current framework of LFAs along with integration of components and characteristics for improving the assay by pushing the detection limits. The review highlights the synergistic aspects of assay designing, sample enrichment strategies, novel nanomaterials-based signal transducers, and high-end analytical techniques that contribute significantly towards sensitivity and specificity enhancement. Various recent studies are discussed supporting the innovations in LFA systems that focus upon the accuracy and reliability of rapid PoC testing. The review also provides a comprehensive overview of all the possible difficulties in commercialization of LFAs subjecting its applicability to pathogen surveillance, water and food testing, disease diagnostics, as well as to agriculture and environmental issues.

2.
Arch Microbiol ; 206(9): 383, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162873

RESUMEN

Candida albicans has been listed in the critical priority group by the WHO in 2022 depending upon its contribution in invasive candidiasis and increased resistance to conventional drugs. Drug repurposing offers an efficient, rapid, and cost-effective solution to develop alternative therapeutics against pathogenic microbes. Alexidine dihydrochloride (AXD) and hexachlorophene (HCP) are FDA approved anti-cancer and anti-septic drugs, respectively. In this study, we have shown antifungal properties of AXD and HCP against the wild type (reference strain) and clinical isolates of C. albicans. The minimum inhibitory concentrations (MIC50) of AXD and HCP against C. albicans ranged between 0.34 and 0.69 µM and 19.66-24.58 µM, respectively. The biofilm inhibitory and eradication concentration of AXD was reported comparatively lower than that of HCP for the strains used in the study. Further investigations were performed to understand the antifungal mode of action of AXD and HCP by studying virulence features like cell surface hydrophobicity, adhesion, and yeast to hyphae transition, were also reduced upon exposure to both the drugs. Ergosterol content in cell membrane of the wild type strain was upregulated on exposure to AXD and HCP both. Biochemical analyses of the exposed biofilm indicated reduced contents of carbohydrate, protein, and e-DNA in the extracellular matrix of the biofilm when compared to the untreated control biofilm. AXD exposure downregulated activity of tissue invading enzyme, phospholipase in the reference strain. In wild type strain, ROS level, and activities of antioxidant enzymes were found elevated upon exposure to both drugs. FESEM analysis of the drug treated biofilms revealed degraded biofilm. This study has indicated mode of action of antifungal potential of alexidine dihydrochloride and hexachlorophene in C. albicans.


Asunto(s)
Antifúngicos , Biopelículas , Candida albicans , Reposicionamiento de Medicamentos , Pruebas de Sensibilidad Microbiana , Candida albicans/efectos de los fármacos , Candida albicans/genética , Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Humanos , Amidinas/farmacología , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Ergosterol/metabolismo , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Virulencia/efectos de los fármacos , Biguanidas
3.
Am J Reprod Immunol ; 92(1): e13905, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39033501

RESUMEN

PROBLEM: The vaginal microbiome has a substantial role in the occurrence of preterm birth (PTB), which contributes substantially to neonatal mortality worldwide. However, current bioinformatics approaches mostly concentrate on the taxonomic classification and functional profiling of the microbiome, limiting their abilities to elucidate the complex factors that contribute to PTB. METHOD OF STUDY: A total of 3757 vaginal microbiome 16S rRNA samples were obtained from five publicly available datasets. The samples were divided into two categories based on pregnancy outcome: preterm birth (PTB) (N = 966) and term birth (N = 2791). Additionally, the samples were further categorized based on the participants' race and trimester. The 16S rRNA reads were subjected to taxonomic classification and functional profiling using the Parallel-META 3 software in Ubuntu environment. The obtained abundances were analyzed using an integrated systems biology and machine learning approach to determine the key microbes, pathways, and genes that contribute to PTB. The resulting features were further subjected to statistical analysis to identify the top nine features with the greatest effect sizes. RESULTS: We identified nine significant features, namely Shuttleworthia, Megasphaera, Sneathia, proximal tubule bicarbonate reclamation pathway, systemic lupus erythematosus pathway, transcription machinery pathway, lepA gene, pepX gene, and rpoD gene. Their abundance variations were observed through the trimesters. CONCLUSIONS: Vaginal infections caused by Shuttleworthia, Megasphaera, and Sneathia and altered small metabolite biosynthesis pathways such as lipopolysaccharide folate and retinal may increase the susceptibility to PTB. The identified organisms, genes, pathways, and their networks may be specifically targeted for the treatment of bacterial infections that increase PTB risk.


Asunto(s)
Aprendizaje Automático , Microbiota , Nacimiento Prematuro , ARN Ribosómico 16S , Biología de Sistemas , Vagina , Humanos , Femenino , Vagina/microbiología , Nacimiento Prematuro/microbiología , Microbiota/genética , Embarazo , ARN Ribosómico 16S/genética , Biomarcadores , Susceptibilidad a Enfermedades , Recién Nacido
4.
Microb Pathog ; 193: 106763, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925344

RESUMEN

Increasing incidences of fungal infections and prevailing antifungal resistance in healthcare settings has given rise to an antifungal crisis on a global scale. The members of the genus Candida, owing to their ability to acquire sessile growth, are primarily associated with superficial to invasive fungal infections, including the implant-associated infections. The present study introduces a novel approach to combat the sessile/biofilm growth of Candida by fabricating nanofibers using a nanoencapsulation approach. This technique involves the synthesis of tyrosol (TYS) functionalized chitosan gold nanocomposite, which is then encapsulated into PVA/AG polymeric matrix using electrospinning. The FESEM, FTIR analysis of prepared TYS-AuNP@PVA/AG NF suggested the successful encapsulation of TYS into the nanofibers. Further, the sustained and long-term stability of TYS in the medium was confirmed by drug release and storage stability studies. The prepared nanomats can absorb the fluid, as evidenced by the swelling index of the nanofibers. The growth and biofilm inhibition, as well as the disintegration studies against Candida, showed 60-70 % biofilm disintegration when 10 mg of TYS-AuNP@PVA/AG NF was used, hence confirming its biological effectiveness. Subsequently, the nanofibers considerably reduced the hydrophobicity index and ergosterol content of the treated cells. Considering the challenges associated with the inhibition/disruption of fungal biofilm, the fabricated nanofibers prove their effectiveness against Candida biofilm. Therefore, nanocomposite-loaded nanofibers have emerged as potential materials that can control fungal colonization and could also promote healing.


Asunto(s)
Antifúngicos , Biopelículas , Candida , Oro , Goma Arábiga , Nanopartículas del Metal , Nanofibras , Alcohol Feniletílico , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Oro/química , Oro/farmacología , Nanofibras/química , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/farmacología , Alcohol Feniletílico/química , Nanopartículas del Metal/química , Antifúngicos/farmacología , Candida/efectos de los fármacos , Goma Arábiga/química , Goma Arábiga/farmacología , Quitosano/química , Quitosano/farmacología , Nanocompuestos/química , Pruebas de Sensibilidad Microbiana , Alcohol Polivinílico/química , Liberación de Fármacos , Plata/farmacología , Plata/química , Ergosterol/química , Interacciones Hidrofóbicas e Hidrofílicas
5.
Mol Aspects Med ; 98: 101290, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38945048

RESUMEN

Globally, fungal infections have evolved as a strenuous challenge for clinicians, particularly in patients with compromised immunity in intensive care units. Fungal co-infection in Covid-19 patients has made the situation more formidable for healthcare practitioners. Surface adhered fungal population known as biofilm often develop at the diseased site to elicit antifungal tolerance and recalcitrant traits. Thus, an innovative strategy is required to impede/eradicate developed biofilm and avoid the formation of new colonies. The development of nanocomposite-based antibiofilm solutions is the most appropriate way to withstand and dismantle biofilm structures. Nanocomposites can be utilized as a drug delivery medium and for fabrication of anti-biofilm surfaces capable to resist fungal colonization. In this context, the present review comprehensively described different forms of nanocomposites and mode of their action against fungal biofilms. Amongst various nanocomposites, efficacy of metal/organic nanoparticles and nanofibers are particularly emphasized to highlight their role in the pursuit of antibiofilm strategies. Further, the inevitable concern of nanotoxicology has also been introduced and discussed with the exigent need of addressing it while developing nano-based therapies. Further, a list of FDA-approved nano-based antifungal formulations for therapeutic usage available to date has been described. Collectively, the review highlights the potential, scope, and future of nanocomposite-based antibiofilm therapeutics to address the fungal biofilm management issue.


Asunto(s)
Antifúngicos , Biopelículas , Nanocompuestos , Biopelículas/efectos de los fármacos , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Antifúngicos/química , Humanos , Nanocompuestos/química , COVID-19 , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Hongos/efectos de los fármacos , Micosis/tratamiento farmacológico , Micosis/microbiología , Tratamiento Farmacológico de COVID-19
6.
Arch Microbiol ; 206(6): 272, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38772980

RESUMEN

Phage-encoded endolysins have emerged as a potential substitute to conventional antibiotics due to their exceptional benefits including host specificity, rapid host killing, least risk of resistance. In addition to their antibacterial potency and biofilm eradication properties, endolysins are reported to exhibit synergism with other antimicrobial agents. In this study, the synergistic potency of endolysins was dissected with antimicrobial peptides to enhance their therapeutic effectiveness. Recombinantly expressed and purified bacteriophage endolysin [T7 endolysin (T7L); and T4 endolysin (T4L)] proteins have been used to evaluate the broad-spectrum antibacterial efficacy using different bacterial strains. Antibacterial/biofilm eradication studies were performed in combination with different antimicrobial peptides (AMPs) such as colistin, nisin, and polymyxin B (PMB) to assess the endolysin's antimicrobial efficacy and their synergy with AMPs. In combination with T7L, polymyxin B and colistin effectively eradicated the biofilm of Pseudomonas aeruginosa and exhibited a synergistic effect. Further, a combination of T4L and nisin displayed a synergistic effect against Staphylococcus aureus biofilms. In summary, the obtained results endorse the theme of combinational therapy consisting of endolysins and AMPs as an effective remedy against the drug-resistant bacterial biofilms that are a serious concern in healthcare settings.


Asunto(s)
Antibacterianos , Péptidos Antimicrobianos , Biopelículas , Sinergismo Farmacológico , Endopeptidasas , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa , Staphylococcus aureus , Biopelículas/efectos de los fármacos , Endopeptidasas/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Pseudomonas aeruginosa/efectos de los fármacos , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/química , Nisina/farmacología , Nisina/química , Polimixina B/farmacología , Bacteriófagos , Colistina/farmacología , Bacteriófago T4/efectos de los fármacos , Bacteriófago T4/fisiología , Bacteriófago T7/efectos de los fármacos , Bacteriófago T7/genética
7.
Diagn Microbiol Infect Dis ; 109(3): 116349, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38744093

RESUMEN

Bacterial vaginosis (BV) is a prevalent vaginal illness resulting from a disruption in the vaginal microbial equilibrium. The vaginal microbiota has been shown to have a substantial impact on the development and continuation of BV. This work utilized 16S rRNA sequence analysis of vaginal microbiome samples (Control vs BV samples) utilizing Parallel-Meta 3 to investigate the variations in microbial composition. The unique genes identified were used to determine prospective therapeutic targets and their corresponding inhibitory ligands. Further, molecular docking was conducted and then MD simulations were carried out to confirm the docking outcomes. In the BV samples, we detected several anaerobic bacteria recognized for their ability to generate biofilms, namely Acetohalobium, Anaerolineaceae, Desulfobacteraceae, and others. Furthermore, we identified Dalfopristin, Clorgyline, and Hydrazine as potential therapeutic options for the management of BV. This research provides new insights into the causes of BV and shows the potential effectiveness of novel pharmacological treatments.


Asunto(s)
Hidrazinas , Microbiota , ARN Ribosómico 16S , Vagina , Vaginosis Bacteriana , Femenino , Vaginosis Bacteriana/tratamiento farmacológico , Vaginosis Bacteriana/microbiología , ARN Ribosómico 16S/genética , Humanos , Microbiota/efectos de los fármacos , Microbiota/genética , Vagina/microbiología , Hidrazinas/farmacología , Hidrazinas/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Simulación del Acoplamiento Molecular , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/clasificación
8.
Indian J Otolaryngol Head Neck Surg ; 76(1): 41-47, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38440621

RESUMEN

This present study aimed to assess the predictive significance of two systemic inflammatory markers, the neutrophilic to lymphocytic ratio (NLR) and platelet to lymphocytic ratio (PLR), in evaluating the prognosis of individuals. The research involved 47 patients diagnosed with head and neck squamous cell carcinoma, all of whom were histo-pathologically confirmed and aged over 18 years. The patients were monitored every 6 months for a period of 18 months. The average age of the study participants was 57.66 ± 13.5 years, with 42 (89.36%) being male and 5 (10.64%) female. After 6 months, the mean PLR in patients with residual/recurrence was 161.5 ± 8.5, which was significantly, exceeded that of patients without residual/recurrence (109.07 ± 36.29; p value < 0.0001). However, no significant correlation was seen between the NLR (p value = 0.822) and residual/recurrence after 6 months. After 12 months, the mean NLR in patients with recurrence was 4.89 ± 0.69, which was significantly higher compared to patients without recurrence (3.48 ± 1.01; p value = 0.025). Conversely, no significant association was found between the PLR (p value = 0.751) and recurrence after 12 months. Notably, there were no significant associations observed in NLR and PLR at the 18-month mark. Elevated levels of the NLR and PLR can serve as indicators of poor prognosis and the presence of residual/recurrent disease in head and neck malignancies.

9.
Heliyon ; 10(1): e23870, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38226217

RESUMEN

Epidemiological as well as experimental studies have established that the pineal hormone melatonin has inhibitory effects on different types of cancers. Several mechanisms have been proposed for the anticancer activities of melatonin, but the fundamental molecular pathways still require clarity. We developed a mouse model of breast cancer using Ehrlich's ascites carcinoma (injected in the 4th mammary fat pad of female Swiss albino mice) and investigated the possibility of targeting the autophagy-inflammation-EMT colloquy to restrict breast tumor progression using melatonin as intervention. Contrary to its conventional antioxidant role, melatonin was shown to augment intracellular ROS and initiate ROS-dependent apoptosis in our system, by modulating the p53/JNK & NF-κB/pJNK expressions/interactions. Melatonin-induced ROS promoted SIRT1 activity. Interplay between SIRT1 and NF-κB/p65 is known to play a pivotal role in regulating the crosstalk between autophagy and inflammation. Persistent inflammation in the tumor microenvironment and subsequent activation of the IL-6/STAT3/NF-κB feedback loop promoted EMT and suppression of autophagy through activation of PI3K/Akt/mTOR signaling pathway. Melatonin disrupted NF-κB/SIRT1 interactions blocking IL-6/STAT3/NF-κB pathway. This led to reversal of pro-inflammatory bias in the breast tumor microenvironment and augmented autophagic responses. The interactions between p62/Twist1, NF-κB/Beclin1 and NF-κB/Slug were altered by melatonin to strike a balance between autophagy, inflammation and EMT, leading to tumor regression. This study provides critical insights into how melatonin could be utilized in treating breast cancer via inhibition of the PI3K/Akt/mTOR signaling and differential modulation of SIRT1 and NF-κB proteins, leading to the establishment of apoptotic and autophagic fates in breast cancer cells.

10.
Indian Pediatr ; 60(11): 939-940, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37950469

RESUMEN

Adoption is gaining an increasing acceptance in the society, and is also being researched well globally; yet, the concept of single parent adoption (SPA) is viewed with scepticism. Although, it is legally possible for prospective parents to proceed with adoption, there are several barriers which have made SPA a lengthy and arduous process. We present a strong case for SPA, in the absence of adequate research, by citing a basic flaw when fighting for SPA. Comparing SPA with a "two-parent model" is not only unreasonable but also unfair as it deprives a single parent of the pleasures of parenting and also denies the child an opportunity of living in a home outside the confines of an orphanage.


Asunto(s)
Padres , Padres Solteros , Niño , Humanos , Estudios Prospectivos , Responsabilidad Parental , Relaciones Padres-Hijo
11.
Appl Microbiol Biotechnol ; 107(19): 6085-6102, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37555948

RESUMEN

An unprecedented expansion of antifungal therapy failure incidences in healthcare settings of Candida glabrata is the matter of global concern that needs to be addressed efficiently and effectively. In this pursuit, the present study has investigated the antifungal mechanism of benzylisoquinoline alkaloid berberine using biochemical, metabolic, and gene expression analysis, with the aim to delineate its therapeutic activity against C. glabrata and differentially fluconazole-responsive clinical isolates. Interestingly, the clinical isolates were found to be highly susceptible to berberine. Berberine was found to control the surface properties like hydrophobicity and charge of the cells. The cell membrane composition was altered by berberine, where the ergosterol and fatty acids were affected. The efflux pump activity was inhibited, and osmotic stress was generated in C. glabrata cells upon berberine exposure. The berberine has also generated oxidative stress and activated antioxidant system in C. glabrata cells. Furthermore, these observations were supported by the transcriptional expression study of C. glabrata cell genes (CDR1, RLM1, SLT2, SUR4, KRE1) and metabolomics analysis. Based on fold change analysis, the study identified 20 differential metabolites upon berberine treatment, which belong to central carbon, amino acids, and nucleotide pathways. The checkerboard analysis revealed the potentiation of some classically used antifungal drugs by berberine, thus suggesting it as a combinatorial nutraceutical adjuvant for the eradication of fungal infections. KEY POINTS: • Berberine exhibited better potency against azole-resistant clinical isolates • Berberine modulated metabolites of different pathways • Berberine generated oxidative stress and blocked efflux pump activity.


Asunto(s)
Antifúngicos , Berberina , Antifúngicos/farmacología , Antifúngicos/metabolismo , Candida glabrata/genética , Berberina/farmacología , Pruebas de Sensibilidad Microbiana , Fluconazol/farmacología , Metabolómica , Farmacorresistencia Fúngica
12.
Fitoterapia ; 169: 105601, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37406886

RESUMEN

Cancer continues to threat mortal alongside scientific community with burgeoning grasp. Most efforts directed to tame Cancer such as radiotherapy or chemotherapy, all came at a cost of severe side effects. The plant derived bioactive compounds on the other hand carries an inevitable advantage of being safer, bioavailable & less toxic compared to contemporary chemotherapeutics. Our strategic approach employed solvent extraction of Black Seed Oil (BSO) to highlight the orchestrated use of its oil soluble phytochemicals - Thymoquinone, Carvacrol & Trans-Anethole when used in cohort. These anti-cancer agents in unbelievably modest amounts present in BSO shows better potential to delineate migratory properties in breast cancer cells as compared to when treated individually. BSO was also observed to have apoptotic calibre when investigated in MDA-MB-231 and MCF-7 cell lines. We performed chemical characterization of the individual phytochemical as well as the oil in-whole to demonstrate the bioactive oil-soluble entities present in whole extract. BSO was observed to have significant anti-cancerous properties in cumulative proportion that is reportedly higher than the individual three components. Besides, this study also reports micro-RNA regulation on BSO administration, thereby playing a pivotal role in breast cancer alleviation. Thus, synergistic action of the integrants serves better combat force against breast cancer in the form of whole extract, hence aiming at a more lucrative paradigm while significantly regulating microRNAs associated with breast cancer migration and apoptosis.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Nigella sativa , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Nigella sativa/química , Estructura Molecular , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
13.
Cells ; 12(10)2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37408207

RESUMEN

Vegetative to reproductive phase transition in phototropic plants is an important developmental process and is sequentially mediated by the expression of micro-RNA MIR172. To obtain insight into the evolution, adaptation, and function of MIR172 in photophilic rice and its wild relatives, we analyzed the genescape of a 100 kb segment harboring MIR172 homologs from 11 genomes. The expression analysis of MIR172 revealed its incremental accumulation from the 2-leaf to 10-leaf stage, with maximum expression coinciding with the flag-leaf stage in rice. Nonetheless, the microsynteny analysis of MIR172s revealed collinearity within the genus Oryza, but a loss of synteny was observed in (i) MIR172A in O. barthii (AA) and O. glaberima (AA); (ii) MIR172B in O. brachyantha (FF); and (iii) MIR172C in O. punctata (BB). Phylogenetic analysis of precursor sequences/region of MIR172 revealed a distinct tri-modal clade of evolution. The genomic information generated in this investigation through comparative analysis of MIRNA, suggests mature MIR172s to have evolved in a disruptive and conservative mode amongst all Oryza species with a common origin of descent. Further, the phylogenomic delineation provided an insight into the adaptation and molecular evolution of MIR172 to changing environmental conditions (biotic and abiotic) of phototropic rice through natural selection and the opportunity to harness untapped genomic regions from rice wild relatives (RWR).


Asunto(s)
MicroARNs , Oryza , Oryza/genética , Oryza/metabolismo , Filogenia , MicroARNs/genética , MicroARNs/metabolismo , Hojas de la Planta/metabolismo
14.
Environ Monit Assess ; 195(8): 930, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37432463

RESUMEN

Water contamination with faecal matter is usually the main cause of microbial waterborne diseases. Such diseases are an alarming situation for small cities in developing countries like India. In this research, to check the microbiological status of drinking water in Solan, Himachal Pradesh (India), water samples were collected from baories/stepwells (n = 14), handpumps (n = 9), and the municipal water distribution system (MWDS) (n = 2) in alternative months of the year (covering three main seasons). In 6 months, 150 samples were collected, and they were all examined for the presence of total coliforms and other bacterial pathogens. The associations between the isolates' ecological and seasonal prevalence were also examined. The coliforms were detected by the Most Probable Number (MPN) method, whose range was noticed from the 2-540/100-ml MPN index. The colony forming unit (CFU) count for different samples at the base log 10 value ranged from 3.03 to 6.19. Different genera isolated and identified were Escherichia coli, Salmonella enteric subsp. enterica, Pseudomonas spp., Klebsiella spp., and Staphylococcus aureus. Overall, 74% of the isolates identified in water samples were from the Enterobacteriaceae family. E. coli was about 42.67% (n = 102), followed by Salmonella enterica subsp. enterica 20.92% (n = 50), Staphylococcus aureus 13.38% (n = 32), Pseudomonas spp. 12.55% (n = 30), and Klebsiella spp. 10.46% (n = 25) amongst the total of 239 isolates. The seasonal impact and the dependency of the occurrence of bacteria on one another were determined to be insignificant in the Spearman correlation test. These results showed that external factors (anthropogenic activities) are mainly responsible for the presence of these bacteria in water resources. The occurrence of bacterial isolates has been noticed in all water samples, irrespective of collecting site or season.


Asunto(s)
Agua Potable , Salmonella enterica , Estaciones del Año , Ciudades , Escherichia coli , Monitoreo del Ambiente , India , Klebsiella , Pseudomonas
15.
J Biomol Struct Dyn ; : 1-16, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37334711

RESUMEN

Aspergillosis is a major causative factor for morbidity in those with impaired immune systems, often caused by Aspergillus fumigatus. The diagnosis and treatment are difficult due to the diversity of individuals and risk factors and still pose a challenge for medical professionals. To understand the pathogenicity of any organism, it is critical to identify the significant metabolic pathways that are involved. Our work focused on developing kinetic models of critical pathways crucial for the survival of A. fumigatus using COPASI. While focusing on the folate biosynthesis, ergosterol biosynthesis and glycolytic pathway; sensitivity, time-course and steady-state analysis were performed to find the proteins/enzymes that are essential in the pathway and can be considered as potential drug targets. For further analysis of the interaction of drug targets identified, a protein-protein interaction (PPI) network was built, and hub nodes were identified using the Cytohubba package from Cytoscape. Based on the findings, dihydropteroate-synthase, dihydrofolate-reductase, 4-amino-4-deoxychorismate synthase, HMG-CoA-reductase, PG-isomerase and hexokinase could act as potential drug targets. Further, molecular docking and MM-GBSA analysis were performed with ligands chosen from DrugBank, and PubChem, and validated by experimental evidence and existing literature based on results from kinetic modeling and PPI network analysis. Based on docking scores and MM-GBSA results, molecular simulations were carried out for 1AJ2-dapsone, 1DIS-sulfamethazine, 1T02-lovastatin and 70YL-3-bromopyruvic acid complexes, which validated our findings. Our study provides a deeper insight into the mechanisms of A. fumigatus's metabolism to reveal dapsone, sulfamethazine, lovastatin and 3-bromopyruvic acid as potential drugs for the treatment of Aspergillosis.Communicated by Ramaswamy H. Sarma.

16.
ACS Appl Bio Mater ; 6(5): 1816-1831, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37075306

RESUMEN

Wound dressings with outstanding biocompatibility, antimicrobial, and tissue regeneration activities are essential to manage emerging recalcitrant antifungal infections to speed up healing. In this study, we have engineered p-cymene-loaded gellan/PVA nanofibers using electrospinning. Morphological and physicochemical properties of the nanofibers were characterized using a multitude of techniques to validate the successful integration of p-cymene (p-cym). The fabricated nanomaterials exhibited strong antibiofilm activity against Candida albicans and Candida glabrata compared to pure p-cymene. In vitro biocompatibility assay demonstrated that nanofibers did not possess any cytotoxicity to the NIH3T3 cell lines. In vivo, full-thickness excision wound healing study showed that the nanofibers were able to heal skin lesions faster than the conventional clotrimazole gel in 24 days without forming any scar. These findings unraveled p-cymene-loaded gellan gum (GA)/poly(vinyl alcohol) (PVA) nanofibers as an effective biomaterial for cutaneous tissue regeneration.


Asunto(s)
Nanofibras , Ratones , Animales , Nanofibras/uso terapéutico , Nanofibras/química , Células 3T3 NIH , Cicatrización de Heridas , Biopelículas
17.
Biology (Basel) ; 12(3)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36979120

RESUMEN

Rice is the major staple food crop for more than 50% of the world's total population, and its production is of immense importance for global food security. As a photophilic plant, its yield is governed by the quality and duration of light. Like all photosynthesizing plants, rice perceives the changes in the intensity of environmental light using phytochromes as photoreceptors, and it initiates a morphological response that is termed as the shade-avoidance response (SAR). Phytochromes (PHYs) are the most important photoreceptor family, and they are primarily responsible for the absorption of the red (R) and far-red (FR) spectra of light. In our endeavor, we identified the morphological differences between two contrasting cultivars of rice: IR-64 (low-light susceptible) and Swarnaprabha (low-light tolerant), and we observed the phenological differences in their growth in response to the reduced light conditions. In order to create genomic resources for low-light tolerant rice, we constructed a subgenomic library of Swarnaprabha that expedited our efforts to isolate light-responsive photoreceptors. The titer of the library was found to be 3.22 × 105 cfu/mL, and the constructed library comprised clones of 4-9 kb in length. The library was found to be highly efficient as per the number of recombinant clones. The subgenomic library will serve as a genomic resource for the Gramineae community to isolate photoreceptors and other genes from rice.

18.
Antibiotics (Basel) ; 12(2)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36830171

RESUMEN

phlD is a novel kind of polyketide synthase involved in the biosynthesis of non-volatile metabolite phloroglucinol by iteratively condensing and cyclizing three molecules of malonyl-CoA as substrate. Phloroglucinol or 2,4-diacetylphloroglucinol (DAPG) is an ecologically important rhizospheric antibiotic produced by pseudomonads; it exhibits broad spectrum anti-bacterial and anti-fungal properties, leading to disease suppression in the rhizosphere. Additionally, DAPG triggers systemic resistance in plants, stimulates root exudation, as well as induces phyto-enhancing activities in other rhizobacteria. Here, we report the cloning and analysis of the phlD gene from soil-borne gram-negative bacteria-Pseudomonas. The full-length phlD gene (from 1078 nucleotides) was successfully cloned and the structural details of the PHLD protein were analyzed in-depth via a three-dimensional topology and a refined three-dimensional model for the PHLD protein was predicted. Additionally, the stereochemical properties of the PHLD protein were analyzed by the Ramachandran plot, based on which, 94.3% of residues fell in the favored region and 5.7% in the allowed region. The generated model was validated by secondary structure prediction using PDBsum. The present study aimed to clone and characterize the DAPG-producing phlD gene to be deployed in the development of broad-spectrum biopesticides for the biocontrol of rhizospheric pathogens.

19.
Biosensors (Basel) ; 13(2)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36832016

RESUMEN

The detection of pathogens in food substances is of crucial concern for public health and for the safety of the natural environment. Nanomaterials, with their high sensitivity and selectivity have an edge over conventional organic dyes in fluorescent-based detection methods. Advances in microfluidic technology in biosensors have taken place to meet the user criteria of sensitive, inexpensive, user-friendly, and quick detection. In this review, we have summarized the use of fluorescence-based nanomaterials and the latest research approaches towards integrated biosensors, including microsystems containing fluorescence-based detection, various model systems with nano materials, DNA probes, and antibodies. Paper-based lateral-flow test strips and microchips as well as the most-used trapping components are also reviewed, and the possibility of their performance in portable devices evaluated. We also present a current market-available portable system which was developed for food screening and highlight the future direction for the development of fluorescence-based systems for on-site detection and stratification of common foodborne pathogens.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Inocuidad de los Alimentos , Anticuerpos , Técnicas Biosensibles/métodos
20.
J Nutr Biochem ; 115: 109283, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36791995

RESUMEN

One of the key biochemical features that distinguish a cancer cell from normal cells is its persistent pro-oxidative state that leads to intrinsic oxidative stress. Malignant cells have evolved sophisticated adaptation systems that involve high dependency on antioxidant functions and upregulation of pro-survival molecules to counteract the deleterious effects of reactive species and to maintain dynamic redox balance. This situation renders them vulnerable to further oxidative challenges by exogenous agents. In the present study, we advocated that pomegranate polyphenols act as pro-oxidants and trigger ROS-mediated apoptosis in cancer cells. With the help of both in vitro and in vivo models, we have established that pomegranate fruit extract (PFE) can cause a significant reduction in tumor proliferation while leaving normal tissues and cells unharmed. Administration of PFE (0.2% v/v) in Erhlich's ascites carcinoma-bearing mice for 3 weeks, inhibited the nuclear factor (erythroid-derived 2)-like 2-antioxidant response element signaling cascade, increased intracellular reactive oxygen species content, altered glutathione cycle thereby activating reactive oxygen species-induced apoptotic pathway in Erhlich's ascites carcinoma cells. Moreover, PFE mitigated epithelial to mesenchymal transition and migration in triple negative breast cancer cells (MDA-MB 231 cells) by down-regulating nuclear factor kappa light-chain-enhancer of activated B cells. Pre-treatment of tumor cells with N-acetyl cysteine protected these cells from undergoing PFE-induced apoptosis while siRNA-mediated silencing of Nuclear factor (erythroid-derived 2)-like 2 and nuclear factor kappa light-chain-enhancer of activated B cells in tumor cells increased the cytotoxic potential and pro-oxidative activity of PFE, indicating a clear role of these transcription factors in orchestrating the anticancer/pro-oxidative properties of PFE. The seminal findings provided may be exploited to develop potential therapeutic targets for selective killing of malignant cells.


Asunto(s)
Carcinoma , Granada (Fruta) , Animales , Ratones , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/química , Especies Reactivas de Oxígeno/metabolismo , Frutas/química , Ascitis , Polifenoles/farmacología , Polifenoles/análisis , Transición Epitelial-Mesenquimal , Estrés Oxidativo , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Apoptosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA