Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heart Rhythm ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38823669

RESUMEN

BACKGROUND: Mitral annular disjunction (MAD) is associated with ventricular arrhythmia in mitral valve prolapse (MVP). The proportional risk from MAD and other predictors of ventricular arrhythmia in MVP has not been well characterized. OBJECTIVE: This study aimed to identify predictors of complex or frequent ventricular ectopy (cfVE) in MVP and to quantify risk of cfVE and mortality in MVP with MAD. METHODS: We studied 632 adult patients with MVP on transthoracic echocardiography at the University of North Carolina Medical Center from 2016 to 2019 (median age, 64 [interquartile range, 52-74] years; 52.7% female; 16.3% African American). Resting and ambulatory electrocardiograms were used to identify cfVE. RESULTS: MAD was present in 94 (14.9%) patients. Independent associations of MAD were bileaflet prolapse (odds ratio [95% CI], 4.25 [2.47-7.33]; P < .0001), myxomatous valve (2.17 [1.27-3.71]; P = .005), absence of hypertension (2.00 [1.21-3.32]; P = .007), electrocardiogram inferior or lateral lead T-wave inversion (2.07 [1.23-3.48]; P = .006), and female sex (1.99 [1.21-3.25]; P = .006). cfVE was frequent with MAD (39 [41.5%] vs 93 [17.3%] without; P < .0001). Independent cfVE predictors were MAD (hazard ratio [95% CI], 2.23 [1.47-3.36]; P = .0001), bileaflet prolapse (1.86 [1.25-2.76]; P = .002), heart failure (1.79 [1.16-2.77]; P = .009), lower left ventricular ejection fraction (0.14 [0.03-0.61]; P = .009), coronary artery disease (1.60 [1.05-2.43]; P = .03), and inferior or lateral lead T-wave inversion (1.51 [1.03-2.22]; P = .03). After a median of 40 (33-48) months, there was increased mortality with MAD (P = .04). CONCLUSION: MAD in MVP is associated with bileaflet or myxomatous MVP, absence of hypertension, T-wave inversion, and female sex. There is increased cfVE and mortality with MAD, highlighting the need for closer follow-up of these patients.

2.
Transl Vis Sci Technol ; 11(9): 19, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36149648

RESUMEN

Purpose: There remains a high unmet need for therapies with new mechanisms of action to achieve reperfusion of ischemic retina in diabetic retinopathy. We examined whether a novel frizzled class receptor 4 (FZD4) agonist could promote regeneration of functional blood vessels in animal models of retinopathy. Methods: We developed a novel Norrin mimetic (SZN-413-p) targeting FZD4 and low-density lipoprotein receptor-related protein 5 (LRP5) and examined its effect on retinal and brain endothelial cells in vitro. SZN-413-p was subsequently humanized, resulting in the therapeutic candidate SZN-413, and was examined in animal models of retinopathy. In an oxygen-induced retinopathy mouse model, avascular and neovascularization areas were measured. Furthermore, in a vascular endothelial growth factor (VEGF)-induced retinal vascular leakage rabbit model, the impact on vascular leakage by SZN-413 was examined by measuring fluorescein leakage. Results: SZN-413-p induced Wnt/ß-catenin signaling and upregulated blood-brain barrier/blood-retina barrier gene expressions in endothelial cells. In the oxygen-induced retinopathy mouse model, SZN-413-p and SZN-413 significantly reduced the neovascularization area size (P < 0.001) to a level comparable to, or better than the positive control aflibercept. Both agonists also showed a reduction in avascular area size compared to vehicle (P < 0.001) and aflibercept groups (P < 0.05 and P < 0.01 for SZN-413-p and SZN-413, respectively). In the VEGF-induced retinal vascular leakage rabbit model, SZN-413 reduced retinal vascular leakage by ∼80%, compared to the vehicle-treated group (P < 0.01). Conclusions: Reduction of neovascular tufts and avascular areas and of VEGF-driven retinal vascular leakage suggests that SZN-413 can simultaneously address retinal non-perfusion and vascular leakage. Translational Relevance: FZD4 signaling modulation by SZN-413 is a novel mechanism of action that can offer a new therapeutic strategy for diabetic retinopathy.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Animales , Retinopatía Diabética/tratamiento farmacológico , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Fluoresceínas/uso terapéutico , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad , Ratones , Neovascularización Patológica , Oxígeno/uso terapéutico , Conejos , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/uso terapéutico , beta Catenina/metabolismo , beta Catenina/uso terapéutico
3.
Cell Mol Gastroenterol Hepatol ; 14(2): 435-464, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35569814

RESUMEN

BACKGROUND AND AIMS: Current management of inflammatory bowel disease leaves a clear unmet need to treat the severe epithelial damage. Modulation of Wnt signaling might present an opportunity to achieve histological remission and mucosal healing when treating IBD. Exogenous R-spondin, which amplifies Wnt signals by maintaining cell surface expression of Frizzled (Fzd) and low-density lipoprotein receptor-related protein receptors, not only helps repair intestine epithelial damage, but also induces hyperplasia of normal epithelium. Wnt signaling may also be modulated with the recently developed Wnt mimetics, recombinant antibody-based molecules mimicking endogenous Wnts. METHODS: We first compared the epithelial healing effects of RSPO2 and a Wnt mimetic with broad Fzd specificity in an acute dextran sulfate sodium mouse colitis model. Guided by Fzd expression patterns in the colon epithelium, we also examined the effects of Wnt mimetics with subfamily Fzd specificities. RESULTS: In the DSS model, Wnt mimetics repaired damaged colon epithelium and reduced disease activity and inflammation and had no apparent effect on uninjured tissue. We further identified that the FZD5/8 and LRP6 receptor-specific Wnt mimetic, SZN-1326-p, was associated with the robust repair effect. Through a range of approaches including single-cell transcriptome analyses, we demonstrated that SZN-1326-p directly impacted epithelial cells, driving transient expansion of stem and progenitor cells, promoting differentiation of epithelial cells, histologically restoring the damaged epithelium, and secondarily to epithelial repair, reducing inflammation. CONCLUSIONS: It is feasible to design Wnt mimetics such as SZN-1326-p that impact damaged intestine epithelium specifically and restore its physiological functions, an approach that holds promise for treating epithelial damage in inflammatory bowel disease.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Animales , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Modelos Animales de Enfermedad , Inflamación , Enfermedades Inflamatorias del Intestino/patología , Ratones , Regeneración , Vía de Señalización Wnt
4.
J Clin Hypertens (Greenwich) ; 23(2): 389-391, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33389801

RESUMEN

Patients with hypertension have increased risk of sudden death, but the impact of blood pressure control in sudden death is not clear. To better understand potential opportunities to prevent sudden, we assessed blood pressure control, comorbidities, and the number of recent medical encounters among all-cause sudden death victims. Less than 40% of sudden death victims with hypertension had controlled blood pressure prior to death. Furthermore, increased frequency of medical visits and number of comorbidities were associated with better blood pressure control Strategies to address clinical inertia in hypertension treatment particularly for patients with fewer comorbidities may attenuate the risk of sudden death.


Asunto(s)
Hipertensión , Presión Sanguínea , Muerte Súbita Cardíaca/epidemiología , Muerte Súbita Cardíaca/prevención & control , Humanos , Hipertensión/tratamiento farmacológico , Hipertensión/epidemiología , Factores de Riesgo
6.
EMBO J ; 36(11): 1605-1622, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28373211

RESUMEN

Base excision repair (BER) is one of the most frequently used cellular DNA repair mechanisms and modulates many human pathophysiological conditions related to DNA damage. Through live cell and in vitro reconstitution experiments, we have discovered a major sub-pathway of conventional long-patch BER that involves formation of a 9-nucleotide gap 5' to the lesion. This new sub-pathway is mediated by RECQ1 DNA helicase and ERCC1-XPF endonuclease in cooperation with PARP1 poly(ADP-ribose) polymerase and RPA The novel gap formation step is employed during repair of a variety of DNA lesions, including oxidative and alkylation damage. Moreover, RECQ1 regulates PARP1 auto-(ADP-ribosyl)ation and the choice between long-patch and single-nucleotide BER, thereby modulating cellular sensitivity to DNA damage. Based on these results, we propose a revised model of long-patch BER and a new key regulation point for pathway choice in BER.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , RecQ Helicasas/metabolismo , Proteína de Replicación A/metabolismo , Línea Celular , ADN/metabolismo , Daño del ADN , Humanos , Modelos Biológicos
7.
Mutat Res ; 775: 48-58, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25879709

RESUMEN

DNA-protein relationships have been studied by numerous methods, but a particular gap in methodology lies in the study of DNA adduct-specific interactions with proteins in vivo, which particularly affects the field of DNA repair. Using the repair of a well-characterized and ubiquitous adduct, the abasic (AP) site, as a model, we have developed a comprehensive method of monitoring DNA lesion-specific recruitment of proteins in vivo over time. We utilized a surrogate system in which a Cy3-labeled plasmid containing a single AP-site was transfected into cells, and the interaction of the labeled DNA with BER enzymes, including APE1, Polß, LIG1, and FEN1, was monitored by immunofluorescent staining of the enzymes by Alexafluor-488-conjugated secondary antibody. The recruitment of enzymes was characterized by quantification of Cy3-Alexafluor-488 co-localization. To validate the microscopy-based method, repair of the transfected AP-site DNA was also quantified at various time points post-transfection using a real time PCR-based method. Notably, the recruitment time kinetics for each enzyme were consistent with AP-site repair time kinetics. This microscopy-based methodology is reliable in detecting the recruitment of proteins to specific DNA substrates and can be extended to study other in vivo DNA-protein relationships in any DNA sequence and in the context of any DNA structure in transfectable proliferating or quiescent cells. The method may be applied to a variety of disciplines of nucleic acid transaction pathways, including repair, replication, transcription, and recombination.


Asunto(s)
Aductos de ADN/metabolismo , ADN Ligasas/metabolismo , ADN Polimerasa beta/metabolismo , Reparación del ADN/fisiología , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Endonucleasas de ADN Solapado/metabolismo , Línea Celular , ADN Ligasa (ATP) , Humanos , Reacción en Cadena de la Polimerasa , Transfección
8.
Bioorg Med Chem ; 23(5): 1102-11, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25650313

RESUMEN

Interest in the mechanisms of DNA repair pathways, including the base excision repair (BER) pathway specifically, has heightened since these pathways have been shown to modulate important aspects of human disease. Modulation of the expression or activity of a particular BER enzyme, N-methylpurine DNA glycosylase (MPG), has been demonstrated to play a role in carcinogenesis and resistance to chemotherapy as well as neurodegenerative diseases, which has intensified the focus on studying MPG-related mechanisms of repair. A specific small molecule inhibitor for MPG activity would be a valuable biochemical tool for understanding these repair mechanisms. By screening several small molecule chemical libraries, we identified a natural polyphenolic compound, morin hydrate, which inhibits MPG activity specifically (IC50=2.6µM). Detailed mechanism analysis showed that morin hydrate inhibited substrate DNA binding of MPG, and eventually the enzymatic activity of MPG. Computational docking studies with an x-ray derived MPG structure as well as comparison studies with other structurally-related flavonoids offer a rationale for the inhibitory activity of morin hydrate observed. The results of this study suggest that the morin hydrate could be an effective tool for studying MPG function and it is possible that morin hydrate and its derivatives could be utilized in future studies focused on the role of MPG in human disease.


Asunto(s)
ADN Glicosilasas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Flavonoides/farmacología , Línea Celular Tumoral , Reparación del ADN , Evaluación Preclínica de Medicamentos , Flavonoides/química , Humanos , Modelos Moleculares , Relación Estructura-Actividad
10.
J Biol Chem ; 290(8): 4966-4980, 2015 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-25538240

RESUMEN

Human N-methylpurine DNA glycosylase (hMPG) initiates base excision repair of a number of structurally diverse purine bases including 1,N(6)-ethenoadenine, hypoxanthine, and alkylation adducts in DNA. Genetic studies discovered at least eight validated non-synonymous single nucleotide polymorphisms (nsSNPs) of the hMPG gene in human populations that result in specific single amino acid substitutions. In this study, we tested the functional consequences of these nsSNPs of hMPG. Our results showed that two specific arginine residues, Arg-141 and Arg-120, are important for the activity of hMPG as the germ line variants R120C and R141Q had reduced enzymatic activity in vitro as well as in mammalian cells. Expression of these two variants in mammalian cells lacking endogenous MPG also showed an increase in mutations and sensitivity to an alkylating agent compared with the WT hMPG. Real time binding experiments by surface plasmon resonance spectroscopy suggested that these variants have substantial reduction in the equilibrium dissociation constant of binding (KD) of hMPG toward 1,N(6)-ethenoadenine-containing oligonucleotide (ϵA-DNA). Pre-steady-state kinetic studies showed that the substitutions at arginine residues affected the turnover of the enzyme significantly under multiple turnover condition. Surface plasmon resonance spectroscopy further showed that both variants had significantly decreased nonspecific (undamaged) DNA binding. Molecular modeling suggested that R141Q substitution may have resulted in a direct loss of the salt bridge between ϵA-DNA and hMPG, whereas R120C substitution redistributed, at a distance, the interactions among residues in the catalytic pocket. Together our results suggest that individuals carrying R120C and R141Q MPG variants may be at risk for genomic instability and associated diseases as a consequence.


Asunto(s)
Adenina/análogos & derivados , ADN Glicosilasas , Reparación del ADN , Mutágenos/farmacología , Mutación Missense , Polimorfismo de Nucleótido Simple , Adenina/farmacología , Sustitución de Aminoácidos , Animales , Dominio Catalítico , ADN Glicosilasas/química , ADN Glicosilasas/genética , ADN Glicosilasas/metabolismo , Reparación del ADN/efectos de los fármacos , Reparación del ADN/genética , Expresión Génica , Inestabilidad Genómica , Células HEK293 , Humanos , Cinética , Ratones , Ratones Noqueados , Resonancia por Plasmón de Superficie
11.
Nucleic Acids Res ; 42(14): 9033-46, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25081213

RESUMEN

Repair of oxidative stress- and inflammation-induced DNA lesions by the base excision repair (BER) pathway prevents mutation, a form of genomic instability which is often observed in cancer as 'mutation hotspots'. This suggests that some sequences have inherent mutability, possibly due to sequence-related differences in repair. This study has explored intrinsic mutability as a consequence of sequence-specific repair of lipid peroxidation-induced DNA adduct, 1, N(6)-ethenoadenine (εA). For the first time, we observed significant delay in repair of ϵA at mutation hotspots in the tumor suppressor gene p53 compared to non-hotspots in live human hepatocytes and endothelial cells using an in-cell real time PCR-based method. In-cell and in vitro mechanism studies revealed that this delay in repair was due to inefficient turnover of N-methylpurine-DNA glycosylase (MPG), which initiates BER of εA. We determined that the product dissociation rate of MPG at the hotspot codons was ≈5-12-fold lower than the non-hotspots, suggesting a previously unknown mechanism for slower repair at mutation hotspots and implicating sequence-related variability of DNA repair efficiency to be responsible for mutation hotspot signatures.


Asunto(s)
ADN Glicosilasas/metabolismo , Reparación del ADN , Genes p53 , Mutación , Adenina/análogos & derivados , Adenina/metabolismo , Animales , Células Cultivadas , Daño del ADN , Células Endoteliales/metabolismo , Hepatocitos/metabolismo , Humanos , Peroxidación de Lípido , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...