Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biotechnol Adv ; 37(6): 107347, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30771467

RESUMEN

Lignocellulose is a rich and sustainable globally available carbon source and is considered a prominent alternative raw material for producing biofuels and valuable chemical compounds. Enzymatic hydrolysis is one of the crucial steps of lignocellulose degradation. Cellulolytic and hemicellulolytic enzyme mixes produced by different microorganisms including filamentous fungi, yeasts and bacteria, are used to degrade the biomass to liberate monosaccharides and other compounds for fermentation or conversion to value-added products. During biomass pretreatment and degradation, toxic compounds are produced, and undesirable carbon catabolic repression (CCR) can occur. In order to solve this problem, microbial metabolic pathways and transcription factors involved have been investigated along with the application of protein engineering to optimize the biorefinery platform. Engineered Microorganisms have been used to produce specific enzymes to breakdown biomass polymers and metabolize sugars to produce ethanol as well other biochemical compounds. Protein engineering strategies have been used for modifying lignocellulolytic enzymes to overcome enzymatic limitations and improving both their production and functionality. Furthermore, promoters and transcription factors, which are key proteins in this process, are modified to promote microbial gene expression that allows a maximum performance of the hydrolytic enzymes for lignocellulosic degradation. The present review will present a critical discussion and highlight the aspects of the use of microorganisms to convert lignocellulose into value-added bioproduct as well combat the bottlenecks to make the biorefinery platform from lignocellulose attractive to the market.


Asunto(s)
Biocombustibles , Biomasa , Hidrólisis , Lignina
2.
Food Chem Toxicol ; 110: 130-141, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28993214

RESUMEN

Citrinin (CIT) is a mycotoxin which causes contamination in the food and is associated with different toxic effects. A web search on CIT has been conducted covering the timespan since 1946. The accumulated data indicate that CIT is produced by several fungal strains belonging to Penicillium, Aspergillus and Monascus genera, and is usually found together with another nephrotoxic mycotoxin, ochratoxin A. Although, it is evident that CIT exposure can exert toxic effects on the heart, liver, kidney, as well as reproductive system, the mechanism of CIT-induced toxicity remains largely elusive. It is still controversial what are the genotoxic and mutagenic effects of CIT. Until now, its toxic effect has been linked to the CIT-mediated oxidative stress and mitochondrial dysfunction in biological systems. However, the toxicity strongly depends on its concentration, route, frequency and time of exposure, as well as from the used test systems. Besides the toxic effects, CIT is also reported to possess a broad spectrum of bioactivities, including antibacterial, antifungal, and potential anticancer and neuro-protective effects in vitro. This systematic review presents the current state of CIT research with emphasis on its bioactivity profile.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Citrinina/química , Citrinina/farmacología , Animales , Citrinina/síntesis química , Daño del ADN/efectos de los fármacos , Contaminación de Alimentos/análisis , Humanos , Estrés Oxidativo/efectos de los fármacos
3.
Front Microbiol ; 7: 1099, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27462314

RESUMEN

Total polyphenols and flavonoids contents, as well as ferric reducing antioxidant power (FRAP), metal ions chelating activity, reducing power assay and scavenging activity of DPPH and ABTS radicals in aqueous and methanolic extracts obtained from mycelium, primordium, and fruiting body of Pleurotus ostreatus in both fresh as dry, were evaluated. The total polyphenol content of dried samples was higher in aqueous extracts obtained both in room temperature and boiling. The total polyphenol content of the fresh samples obtained at room temperature and boiling was higher in aqueous extract of mycelium and in the methanolic extract of the fruiting body. In general, flavonoids represented a very small percentage of the total polyphenol content. The antioxidant activity measured by the FRAP method of extracts from fresh samples were higher with respect to the dried samples. The results of the metal ion chelating activity indicate that all extracts tested had acted. The reducing power of all samples was concentration dependent. In general, the extracts of dried samples showed higher reducing power than the extracts of fresh samples and tend to show greater reducing power by aqueous than methanolic extracts. It was observed that the DPPH and ABTS radical scavenging activities were positively correlated to the concentration of the extract. The results suggested that antioxidant activity could be due to polyphenols, but mainly by different molecules or substances present in the extracts. Overall, the fruiting body of P. ostreatus showed the best results and the possibility of continuing to investigate its functional properties of this fungus is opened. This is the first report where the antioxidant activity of P. ostreatus in different growth stage was reported.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA