Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Am Nat ; 202(3): E65-E82, 2023 09.
Article En | MEDLINE | ID: mdl-37606946

AbstractCompetition typically takes place in a spatial context, but eco-evolutionary models rarely address the joint evolution of movement and competition strategies. Here we investigate a spatially explicit forager-kleptoparasite model where consumers can either forage on a heterogeneous resource landscape or steal resource items from conspecifics (kleptoparasitism). We consider three scenarios: (1) foragers without kleptoparasites, (2) consumers specializing as foragers or as kleptoparasites, and (3) consumers that can switch between foraging and kleptoparasitism depending on local conditions. We model movement strategies as individual-specific combinations of preferences for environmental cues, similar to step-selection coefficients. Using mechanistic, individual-based simulations, we study the joint evolution of movement and competition strategies, and we investigate the implications for the distribution of consumers over this landscape. Movement and competition strategies evolve rapidly and consistently across scenarios, with marked differences among scenarios, leading to differences in resource exploitation patterns. In scenario 1, foragers evolve considerable individual variation in movement strategies, while in scenario 2, movement strategies show a swift divergence between foragers and kleptoparasites. In scenario 3, where individuals' competition strategies are conditional on local cues, movement strategies facilitate kleptoparasitism, and individual consistency in competition strategy also emerges. Even in the absence of kleptoparasitism (scenario 1), the distribution of consumers deviates considerably from predictions of ideal free distribution models because of the intrinsic difficulty of moving effectively on a depleted resource landscape with few reliable cues. Our study emphasizes the advantages of a mechanistic approach when studying competition in a spatial context and suggests how evolutionary modeling can be integrated with current work in animal movement ecology.


Cues , Ecology , Animals , Movement
2.
Mamm Biol ; 103(1): 69-81, 2023.
Article En | MEDLINE | ID: mdl-36373055

Urban habitats provide wildlife with predictable, easily accessible and abundant food sources in the form of human food waste. Urban eastern gray squirrels (Sciurus carolinensis) are commonly observed feeding in trash bins, but we lack data regarding the type, quantity and seasonal changes in food waste usage. We observed five trash bins on an urban university campus during four different observation periods. We recorded the time squirrels spent on and inside trash bins and type of retrieved food items. We also recorded ambient temperature, human presence and trash bin filling. Moreover, we determined changes in squirrel population density in a natural and three anthropogenic habitats during the same periods. Trash bins were fuller when human presence was higher. The higher human presence, the more squirrels went on and inside the bin, but there was no effect on number of retrieved food items. Trash bin usage by squirrels decreased when ambient temperature and bin filling increased. Most food items were retrieved during the coldest observation period, a period of high human presence, and the majority of retrieved food items were starchy foods (e.g., bread, French fries). The relationship between the number of squirrels observed along transects and a measure of urbanization, the normalized difference built-up index, was negative in periods with high ambient temperatures and positive in periods with low ambient temperatures, indicating winter may be less challenging in urban areas, likely facilitated by the availability of anthropogenic food sources, allowing a higher level of activity throughout winter. Supplementary Information: The online version contains supplementary material available at 10.1007/s42991-022-00326-3.

4.
Science ; 375(6582): eabg1780, 2022 02 18.
Article En | MEDLINE | ID: mdl-35175823

Understanding animal movement is essential to elucidate how animals interact, survive, and thrive in a changing world. Recent technological advances in data collection and management have transformed our understanding of animal "movement ecology" (the integrated study of organismal movement), creating a big-data discipline that benefits from rapid, cost-effective generation of large amounts of data on movements of animals in the wild. These high-throughput wildlife tracking systems now allow more thorough investigation of variation among individuals and species across space and time, the nature of biological interactions, and behavioral responses to the environment. Movement ecology is rapidly expanding scientific frontiers through large interdisciplinary and collaborative frameworks, providing improved opportunities for conservation and insights into the movements of wild animals, and their causes and consequences.


Animals, Wild/physiology , Behavior, Animal , Big Data , Ecology , Environment , Movement , Animal Migration , Animals , Data Collection , Ecosystem , Spatio-Temporal Analysis
...