Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Article En | MEDLINE | ID: mdl-38740902

Repetitive transcranial magnetic stimulation (rTMS) treatment protocols targeting the right dlPFC have been effective in reducing anxiety symptoms comorbid with depression. However, the mechanism behind these effects is unclear. Further, it is unclear whether these results generalize to non-depressed individuals. We conducted a series of studies aimed at understanding the link between anxiety potentiated startle and the right dlPFC, following a previous study suggesting that continuous theta burst stimulation (cTBS) to the right dlPFC can make people more anxious. Based on these results we hypothesized that intermittent TBS (iTBS), which is thought to have opposing effects on plasticity, may reduce anxiety when targeted at the same right dlPFC region. In this double-blinded, cross-over design, 28 healthy subjects underwent 12 study visits over a 4-week period. During each of their 2 stimulation weeks, they received four 600 pulse iTBS sessions (2/day), with a post-stimulation testing session occurring 24 h following the final iTBS session. One week they received active stimulation, one week they received sham. Stimulation weeks were separated by a 1-week washout period and the order of active/sham delivery was counterbalanced across subjects. During the testing session, we induced anxiety using the threat of unpredictable shock and measured anxiety potentiated startle. Contrary to our initial hypothesis, subjects showed increased startle reactivity following active compared to sham stimulation. These results replicate work from our two previous trials suggesting that TMS to the right dlPFC increases anxiety potentiated startle, independent of both the pattern of stimulation and the timing of the post stimulation measure. Although these results confirm a mechanistic link between right dlPFC excitability and startle, capitalizing upon this link for the benefit of patients will require future exploration.

2.
PLoS One ; 19(5): e0302660, 2024.
Article En | MEDLINE | ID: mdl-38709724

The Stroop task is a well-established tool to investigate the influence of competing visual categories on decision making. Neuroimaging as well as rTMS studies have demonstrated the involvement of parietal structures, particularly the intraparietal sulcus (IPS), in this task. Given its reliability, the numerical Stroop task was used to compare the effects of different TMS targeting approaches by Sack and colleagues (Sack AT 2009), who elegantly demonstrated the superiority of individualized fMRI targeting. We performed the present study to test whether fMRI-guided rTMS effects on numerical Stroop task performance could still be observed while using more advanced techniques that have emerged in the last decade (e.g., electrical sham, robotic coil holder system, etc.). To do so we used a traditional reaction time analysis and we performed, post-hoc, a more advanced comprehensive drift diffusion modeling approach. Fifteen participants performed the numerical Stroop task while active or sham 10 Hz rTMS was applied over the region of the right intraparietal sulcus (IPS) showing the strongest functional activation in the Incongruent > Congruent contrast. This target was determined based on individualized fMRI data collected during a separate session. Contrary to our assumption, the classical reaction time analysis did not show any superiority of active rTMS over sham, probably due to confounds such as potential cumulative rTMS effects, and the effect of practice. However, the modeling approach revealed a robust effect of rTMS on the drift rate variable, suggesting differential processing of congruent and incongruent properties in perceptual decision-making, and more generally, illustrating that more advanced computational analysis of performance can elucidate the effects of rTMS on the brain where simpler methods may not.


Magnetic Resonance Imaging , Reaction Time , Stroop Test , Transcranial Magnetic Stimulation , Humans , Magnetic Resonance Imaging/methods , Transcranial Magnetic Stimulation/methods , Male , Female , Adult , Reaction Time/physiology , Young Adult , Parietal Lobe/physiology , Parietal Lobe/diagnostic imaging , Decision Making/physiology , Brain Mapping/methods
3.
Front Hum Neurosci ; 16: 883337, 2022.
Article En | MEDLINE | ID: mdl-35795258

Transcranial magnetic stimulation (TMS) was used to test the functional role of parietal and prefrontal cortical regions activated during a playing card Guilty Knowledge Task (GKT). Single-pulse TMS was applied to 15 healthy volunteers at each of three target sites: left and right dorsolateral prefrontal cortex and midline parietal cortex. TMS pulses were applied at each of five latencies (from 0 to 480 ms) after the onset of a card stimulus. TMS applied to the parietal cortex exerted a latency-specific increase in inverse efficiency score and in reaction time when subjects were instructed to lie relative to when asked to respond with the truth, and this effect was specific to when TMS was applied at 240 ms after stimulus onset. No effects of TMS were detected at left or right DLPFC sites. This manipulation with TMS of performance in a deception task appears to support a critical role for the parietal cortex in intentional false responding, particularly in stimulus selection processes needed to execute a deceptive response in the context of a GKT. However, this interpretation is only preliminary, as further experiments are needed to compare performance within and outside of a deceptive context to clarify the effects of deceptive intent.

4.
Neurobiol Learn Mem ; 156: 80-85, 2018 12.
Article En | MEDLINE | ID: mdl-30415000

Prediction error is recognized as a necessary boundary condition for memory reactivation and reconsolidation. Furthermore, behavioral manipulations (e.g., visuospatial interference tasks, like Tetris) have been shown to be effective at disrupting reactivated memory. In the present study, participants created a memory with positive valence by viewing an uplifting video of a young boy who built an arcade out of cardboard boxes. Two weeks later, memory for the video was reactivated with a prediction error (i.e., new information was added) or without a prediction error (i.e., no new information was added). Following memory reactivation, participants completed a novel visuospatial interference task (i.e., a complex word search) or a control task (i.e., sitting quietly). One week following reactivation, participants completed two memory tests (i.e., free recall and recognition). Results showed that the visuospatial interference task was effective in reducing free recall, but only in the group that received a prediction error during retrieval. No other significant differences were observed, including on the recognition test. These results expand the literature on reconsolidation by showing that destabilization of memory with a positive emotional valence requires a prediction error and that a novel visuospatial interference task (i.e., complex word search) is an effective behavioral manipulation for decreasing free recall.


Anticipation, Psychological/physiology , Emotions/physiology , Mental Recall/physiology , Pattern Recognition, Visual/physiology , Recognition, Psychology/physiology , Space Perception/physiology , Adolescent , Adult , Female , Humans , Male , Young Adult
...