Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cardiovasc Res ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38577741

RESUMEN

AIMS: An intrinsic feature of gene transcription is the formation of DNA superhelices near the transcription bubble, which are resolved upon induction of transient double-stranded breaks (DSBs) by topoisomerases. Unrepaired DSBs are pathogenic as they lead to cell cycle arrest, senescence, inflammation, and organ dysfunction. We posit that DSBs would be more prevalent at the genomic sites that are associated with gene expression. The objectives were to identify and characterize genome-wide DSBs at the nucleotide resolution and determine the association of DSBs with transcription in cardiac myocytes. METHODS AND RESULTS: We identified the genome-wide DSBs in ∼1 million cardiac myocytes per heart in three wild-type and three myocyte-specific LMNA-deficient (Myh6-Cre:LmnaF/F) mice by END-Sequencing. The prevalence of DSBs was 0.8% and 2.2% in the wild-type and Myh6-Cre:LmnaF/F myocytes, respectively. The END-Seq signals were enriched for 8 and 6764 DSBs in the wild-type and Myh6-Cre:LmnaF/F myocytes, respectively (q < 0.05). The DSBs were preferentially localized to the gene regions, transcription initiation sites, cardiac transcription factor motifs, and the G quadruplex forming structures. Because LMNA regulates transcription through the lamin-associated domains (LADs), we defined the LADs in cardiac myocytes by a Cleavage Under Targets & Release Using Nuclease (CUT&RUN) assay (N = 5). On average there were 818 LADs per myocyte. Constitutive LADs (cLADs), defined as LADs that were shared by at least three genomes (N = 2572), comprised about a third of the mouse cardiac myocyte genomes. Transcript levels of the protein-coding genes located at the cLADs (N = 3975) were ∼16-fold lower than those at the non-LAD regions (N = ∼17 778). The prevalence of DSBs was higher in the non-LAD as compared to the cLAD regions. Likewise, DSBs were more common in the loss-of-LAD regions, defined as the genomic regions in the Myh6-Cre:LmnaF/F that were juxtaposed to the LAD regions in the wild-type myocytes. CONCLUSION: To our knowledge, this is the first identification of the DSBs, at the nucleotide resolution in the cardiovascular system. The prevalence of DSBs was higher in the genomic regions associated with transcription. Because transcription is pervasive, DSBs are expected to be common and pathogenic in various states and aging.

2.
Curr Opin Cardiol ; 39(4): 371-379, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38606626

RESUMEN

PURPOSE OF REVIEW: The studies on chromatin-modifying enzymes and how they respond to different stimuli within the cell have revolutionized our understanding of epigenetics. In this review, we provide an overview of the recent studies on epigenetic mechanisms implicated in heart failure. RECENT FINDINGS: We focus on the major mechanisms and the conceptual advances in epigenetics as evidenced by studies in humans and mouse models of heart failure. The significance of epigenetic modifications and the enzymes that catalyze them is also discussed. New findings from the studies of histone lysine demethylases demonstrate their significance in regulating fetal gene expression, as well as their aberrant expression in adult hearts during HF. Similarly, the relevance of histone deacetylases inhibition in heart failure and the role of HDAC6 in cardio-protection are discussed. Finally, the role of LMNA (lamin A/C), a nuclear membrane protein that interacts with chromatin to form hundreds of large chromatin domains known as lamin-associated domains (LADs), and 3D genome structure in epigenetic regulation of gene expression and heart failure is discussed. SUMMARY: Epigenetic modifications provide a mechanism for responding to stress and environmental variation, enabling reactions to both external and internal stimuli, and their dysregulation can be pathological as in heart failure. To gain a thorough understanding of the pathological mechanisms and to aid in the development of targeted treatments for heart failure, future research on studying the combined effects of numerous epigenetic changes and the structure of chromatin is warranted.


Asunto(s)
Epigénesis Genética , Insuficiencia Cardíaca , Insuficiencia Cardíaca/genética , Humanos , Animales
3.
J Cardiovasc Aging ; 4(1)2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38455511
4.
Cardiovasc Res ; 120(6): 630-643, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38230606

RESUMEN

AIMS: Human pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) provide a platform to identify and characterize factors that regulate the maturation of CMs. The transition from an immature foetal to an adult CM state entails coordinated regulation of the expression of genes involved in myofibril formation and oxidative phosphorylation (OXPHOS) among others. Lysine demethylase 5 (KDM5) specifically demethylates H3K4me1/2/3 and has emerged as potential regulators of expression of genes involved in cardiac development and mitochondrial function. The purpose of this study is to determine the role of KDM5 in iPSC-CM maturation. METHODS AND RESULTS: KDM5A, B, and C proteins were mainly expressed in the early post-natal stages, and their expressions were progressively downregulated in the post-natal CMs and were absent in adult hearts and CMs. In contrast, KDM5 proteins were persistently expressed in the iPSC-CMs up to 60 days after the induction of myogenic differentiation, consistent with the immaturity of these cells. Inhibition of KDM5 by KDM5-C70 -a pan-KDM5 inhibitor, induced differential expression of 2372 genes, including upregulation of genes involved in fatty acid oxidation (FAO), OXPHOS, and myogenesis in the iPSC-CMs. Likewise, genome-wide profiling of H3K4me3 binding sites by the cleavage under targets and release using nuclease assay showed enriched of the H3K4me3 peaks at the promoter regions of genes encoding FAO, OXPHOS, and sarcomere proteins. Consistent with the chromatin and gene expression data, KDM5 inhibition increased the expression of multiple sarcomere proteins and enhanced myofibrillar organization. Furthermore, inhibition of KDM5 increased H3K4me3 deposits at the promoter region of the ESRRA gene and increased its RNA and protein levels. Knockdown of ESRRA in KDM5-C70-treated iPSC-CM suppressed expression of a subset of the KDM5 targets. In conjunction with changes in gene expression, KDM5 inhibition increased oxygen consumption rate and contractility in iPSC-CMs. CONCLUSION: KDM5 inhibition enhances maturation of iPSC-CMs by epigenetically upregulating the expressions of OXPHOS, FAO, and sarcomere genes and enhancing myofibril organization and mitochondrial function.


Asunto(s)
Diferenciación Celular , Ácidos Grasos , Miocitos Cardíacos , Miofibrillas , Fosforilación Oxidativa , Proteína 2 de Unión a Retinoblastoma , Humanos , Células Cultivadas , Ácidos Grasos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Histonas/genética , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/enzimología , Mitocondrias Cardíacas/enzimología , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/genética , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/metabolismo , Miofibrillas/metabolismo , Miofibrillas/enzimología , Oxidación-Reducción , Regiones Promotoras Genéticas , Proteína 2 de Unión a Retinoblastoma/metabolismo , Proteína 2 de Unión a Retinoblastoma/genética
5.
Cardiovasc Res ; 119(17): 2712-2728, 2023 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-37625794

RESUMEN

AIMS: Mutations in the DSP gene encoding desmoplakin, a constituent of the desmosomes at the intercalated discs (IDs), cause a phenotype that spans arrhythmogenic cardiomyopathy (ACM) and dilated cardiomyopathy. It is typically characterized by biventricular enlargement and dysfunction, myocardial fibrosis, cell death, and arrhythmias. The canonical wingless-related integration (cWNT)/ß-catenin pathway is implicated in the pathogenesis of ACM. The ß-catenin is an indispensable co-transcriptional regulator of the cWNT pathway and a member of the IDs. We genetically inactivated or activated ß-catenin to determine its role in the pathogenesis of desmoplakin cardiomyopathy. METHODS AND RESULTS: The Dsp gene was conditionally deleted in the 2-week-old post-natal cardiac myocytes using tamoxifen-inducible MerCreMer mice (Myh6-McmTam:DspF/F). The cWNT/ß-catenin pathway was markedly dysregulated in the Myh6-McmTam:DspF/F cardiac myocytes, as indicated by a concomitant increase in the expression of cWNT/ß-catenin target genes, isoforms of its key co-effectors, and the inhibitors of the pathway. The ß-catenin was inactivated or activated upon inducible deletion of its transcriptional or degron domain, respectively, in the Myh6-McmTam:DspF/F cardiac myocytes. Genetic inactivation of ß-catenin in the Myh6-McmTam:DspF/F mice prolonged survival, improved cardiac function, reduced cardiac arrhythmias, and attenuated myocardial fibrosis, and cell death caused by apoptosis, necroptosis, and pyroptosis, i.e. PANoptosis. In contrast, activation of ß-catenin had the opposite effects. The deleterious and the salubrious effects were independent of changes in the expression levels of the cWNT target genes and were associated with changes in several molecular and biological pathways, including cell death programmes. CONCLUSION: The cWNT/ß-catenin was markedly dysregulated in the cardiac myocytes in a mouse model of desmoplakin cardiomyopathy. Inactivation of ß-catenin attenuated, whereas its activation aggravated the phenotype, through multiple molecular pathways, independent of the cWNT transcriptional activity. Thus, suppression but not activation of ß-catenin might be beneficial in desmoplakin cardiomyopathy.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Cardiomiopatías , Ratones , Animales , Displasia Ventricular Derecha Arritmogénica/genética , Desmoplaquinas/genética , Desmoplaquinas/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Cardiomiopatías/genética , Arritmias Cardíacas/metabolismo , Fibrosis
6.
Artículo en Inglés | MEDLINE | ID: mdl-37577061

RESUMEN

Introduction: The genome is constantly exposed to numerous stressors, which induce DNA lesions, including double-stranded DNA breaks (DSBs). DSBs are the most dangerous, as they induce genomic instability. In response to DNA damage, the cell activates nuclear DNA damage response (DDR) and the cytosolic DNA sensing protein (CDSP) pathways, the latter upon release of the DSBs to the cytosol. The CDSP pathway activates NFκB and IRF3, which induce the expression of the pro-inflammatory genes. There is scant data on the activation of the CDSP pathway in human hearts with dilated cardiomyopathy (DCM). Aim: We aimed to determine expression levels of selected components of the CDSP pathway in human hearts with DCM. Methods: The DNA strand breaks were detected by the single-cell gel electrophoresis or the comet assay and expression of selected proteins by immunoblotting. Transcript levels were quantified in the RNA-Seq data. Results: Single-cell gel electrophoresis showed an approximately 2-fold increase in the number of COMET cells in the DCM hearts. Immunoblotting showed increased levels of cyclic GMP-AMP synthase (CGAS), the canonical CDSP; TANK-binding kinase 1 (TBK1), an intermediary kinase in the pathway; and RELB, P52, and P50 components of the NFκB pathway in human heart samples from patients with DCM. Likewise, transcript levels of over 2 dozen genes involved in inflammatory responses were increased. Conclusions: The findings provide the first set of evidence for the activation of the CDSP pathway in human hearts with DCM. The data in conjunction with the previous evidence of activation of the DDR pathway implicate the DSBs in the pathogenesis of human DCM.

7.
8.
bioRxiv ; 2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37090524

RESUMEN

Rationale: Human pluripotent stem cell-derived CMs (iPSC-CMs) are a valuable tool for disease modeling, cell therapy and to reconstruct the CM maturation process and identify, characterize factors that regulate maturation. The transition from immature fetal to adult CM entails coordinated regulation of the mature gene programming, which is characterized by the induction of myofilament and OXPHOS gene expression among others. Recent studies in Drosophila , C. elegans, and C2C12 myoblast cell lines have implicated the histone H3K4me3 demethylase KDM5 and its homologs, as a potential regulator of developmental gene program and mitochondrial function. We speculated that KDM5 may potentiate the maturation of iPSC-CMs by targeting a conserved epigenetic program that encompass mitochondrial OXPHOS and other CM specific maturation genes. Objectives: The purpose of this study is to determine the role of KDM5 in iPSC-CM maturation. Methods and Results: Immunoblot analysis revealed that KDM5A, B, and C expression was progressively downregulated in postnatal cardiomyocytes and absent in adult hearts and CMs. Additionally, KDM5 proteins were found to be persistently expressed in iPSC-CMs up to 60 days after the onset of myogenic differentiation, consistent with the immaturity of these cells. Inhibition of KDM5 by KDM5-C70 -a pan-KDM5 inhibitor-resulted in differential regulation of 2,372 genes including upregulation of Fatty acid oxidation (FAO), OXPHOS, and myogenic gene programs in iPSC-CMs. Likewise, genome-wide profiling of H3K4me3 binding sites by the CUT&RUN assay revealed enriched H3K4me3 peaks at the promoter regions of FAO, OXPHOS, and sarcomere genes. Consistent with the chromatin and gene expression data, KDM5 inhibition led to increased expression of multiple sarcomere proteins, enhanced myofibrillar organization and improved calcium handling. Furthermore, inhibition of KDM5 increased H3K4me3 deposits at the promoter region of the ESRRA gene, which is known to regulate OXPHOS and cardiomyocyte maturation, and resulted in its increased RNA and protein levels. Finally, KDM5 inhibition increased baseline, peak, and spare oxygen consumption rates in iPSC-CMs. Conclusions: KDM5 regulates the maturation of iPSC-CMs by epigenetically regulating the expression of ESRRA, OXPHOS, FAO, and sarcomere genes and enhancing myofibril organization and mitochondrial function.

10.
J Cardiovasc Aging ; 3(1)2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36818425

RESUMEN

Introduction: Arrhythmogenic cardiomyopathy (ACM) is hereditary cardiomyopathy caused by pathogenic variants (mutations) in genes encoding the intercalated disc (ID), particularly desmosome proteins. ACM caused by mutations in the DSP gene encoding desmoplakin (DSP) is characterized by the prominence of cell death, myocardial fibrosis, and inflammation, and is referred to as desmoplakin cardiomyopathy. Aim: The aim of this article was to gain insight into the pathogenesis of DSP cardiomyopathy. Methods and Results: The Dsp gene was exclusively deleted in cardiac myocytes using tamoxifen-inducible MerCreMer (Myh6-Mcm Tam) and floxed Dsp (Dsp F/F) mice (Myh6-Mcm Tam:Dsp F/F). Recombination was induced upon subcutaneous injection of tamoxifen (30 mg/kg/d) for 5 days starting post-natal day 14. Survival was analyzed by Kaplan-Meier plots, cardiac function by echocardiography, arrhythmias by rhythm monitoring, and gene expression by RNA-Seq, immunoblotting, and immunofluorescence techniques. Cell death was analyzed by the TUNEL assay and the expression levels of specific markers were by RT-PCR and immunoblotting. Myocardial fibrosis was assessed by picrosirius red staining of the myocardial sections, RT-PCR, and immunoblotting. The Myh6-Mcm Tam: Dsp F/F mice showed extensive molecular remodeling of the IDs and the differential expression of ~10,000 genes, which predicted activation of KDM5A, IRFs, and NFκB and suppression of PPARGC1A and RB1, among others in the DSP-deficient myocytes. Gene set enrichment analysis predicted activation of the TNFα/NFκB pathway, inflammation, cell death programs, and fibrosis. Analysis of cell death markers indicated PANoptosis, comprised of apoptosis (increased CASP3, CASP8, BAD and reduced BCL2), necroptosis (increased RIPK1, RIPK3, and MLKL), and pyroptosis (increased GSDMD and ASC or PYCARD) in the DSP-deficient myocytes. Transcript levels of the pro-inflammatory and pro-fibrotic genes were increased and myocardial fibrosis comprised ~25% of the myocardium in the DSP-deficient hearts. The Myh6-Mcm Tam:Dsp F/F mice showed severe cardiac systolic dysfunction and ventricular arrhythmias, and died prematurely with a median survival rate of ~2 months. Conclusion: The findings identify PANoptosis as a prominent phenotypic feature of DSP cardiomyopathy and set the stage for delineating the specific molecular mechanisms involved in its pathogenesis. The model also provides the opportunity to test the effects of pharmacological and genetic interventions on myocardial fibrosis and cell death.

11.
J Cardiovasc Aging ; 2(3)2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35891706

RESUMEN

Introduction: Mutations in the LMNA gene, encoding Lamin A/C (LMNA), are established causes of dilated cardiomyopathy (DCM). The phenotype is typically characterized by progressive cardiac conduction defects, arrhythmias, heart failure, and premature death. DCM is primarily considered a disease of cardiac myocytes. However, LMNA is also expressed in other cardiac cell types, including fibroblasts. Aim: The purpose of the study was to determine the contribution of the fibroblasts to DCM caused by LMNA deficiency. Methods and Results: The Lmna gene was deleted by crossing the platelet-derived growth factor receptor α-Cre recombinase (Pdgfra-Cre) and floxed Lmna (Lmna F/F) mice. The LMNA protein was nearly absent in ~80% of the cardiac fibroblasts and ~25% of cardiac myocytes in the Pdgfra-Cre:Lmna F/F mice. The Pdgfra-Cre:Lmna F/F mice showed an early phenotype characterized by cardiac conduction defects, arrhythmias, cardiac dysfunction, myocardial fibrosis, apoptosis, and premature death within the first six weeks of life. The Pdgfra-Cre:Lmna wild type/F (Lmna W/F) mice also showed a similar but slowly evolving phenotype that was expressed within one year of age. RNA sequencing of LMNA-deficient and wild-type cardiac fibroblasts identified differential expression of ~410 genes, which predicted activation of the TP53 and TNFA/NFκB and suppression of the cell cycle pathways. In agreement with these findings, levels of phospho-H2AFX, ATM, phospho-TP53, and CDKN1A, markers of the DNA damage response (DDR) pathway, were increased in the Pdgfra-Cre:Lmna F/F mouse hearts. Moreover, expression of senescence-associated beta-galactosidase was induced and levels of the senescence-associated secretory phenotype (SASP) proteins TGFß1, CTGF (CCN2), and LGLAS3 were increased as well as the transcript levels of additional genes encoding SASP proteins in the Pdgfra-Cre:Lmna F/F mouse hearts. Finally, expression of pH2AFX, a bonafide marker of the double-stranded DNA breaks, was increased in cardiac fibroblasts isolated from the Pdgfra-Cre:Lmna F/F mouse hearts. Conclusion: Deletion of the Lmna gene in fibroblasts partially recapitulates the phenotype of the LMNA-associated DCM, likely through induction of double-stranded DNA breaks, activation of the DDR pathway, and induction of expression of the SASP proteins. The findings indicate that the phenotype in the LMNA-associated DCM is the aggregate consequence of the LMNA deficiency in multiple cardiac cells, including cardiac fibroblasts.

12.
Artículo en Inglés | MEDLINE | ID: mdl-35224561

RESUMEN

INTRODUCTION: Aging is associated with cardiac myocyte loss, sarcopenia, and cardiac dysfunction. Adult cardiac myocytes are postmitotic cells with an insufficient proliferative capacity to compensate for myocyte loss. The canonical WNT (cWNT) pathway is involved in the regulation of cell cycle reentry in various cell types. The effects of the cWNT pathway on the expression of genes involved in cell cycle reentry in the postmitotic cardiac myocytes are unknown. AIM: The aim of the study was to identify genes whose expression is regulated by the ß-catenin, the indispensable component to the cWNT signaling, in the postmitotic myocytes. METHODS AND RESULTS: Cardiac myocyte-specific tamoxifen-inducible MerCreMer (Myh6-Mcm) mice were used to delete the floxed exon 3 or exons 8 to 13 of the Ctnnb1 gene to induce gain-of-function (GoF) or loss-of-function (LoF) the ß-catenin, respectively. Deletion of exon 3 leads to the expression of a stable ß-catenin. In contrast, deletion of exons 8-13 leads to the expression of transcriptionally inactive truncated ß-catenin, which is typically degraded. GoF or LoF of the ß-catenin was verified by reverse transcription-polymerase chain reaction (RT-PCR), immunoblotting, and immunofluorescence. Myocyte transcripts were analyzed by RNA-Sequencing (RNA-Seq) at 4 weeks of age. The GoF of ß-catenin was associated with differential expression of ~1700 genes, whereas its LoF altered expression of ~400 genes. The differentially expressed genes in the GoF myocytes were enriched in pathways regulating the cell cycle, including karyokinesis and cytokinesis, whereas the LoF was associated with increased expression of genes involved in mitochondrial oxidative phosphorylation. These findings were validated by RT-PCR in independent samples. Short-term GoF nor LoF of ß-catenin did not affect the number of cardiac myocytes, cardiac function, myocardial fibrosis, myocardial apoptosis, or adipogenesis at 4 weeks of age. CONCLUSION: Activation of the ß-catenin of the cWNT pathway in postmitotic myocytes leads to cell cycle reentry and expression of genes involved in cytokinesis without leading to an increase in the number of myocytes. In contrast, suppression of the ß-catenin modestly increases the expression of genes involved in oxidative phosphorylation. The findings provide insights into the role of ß-catenin of the cWNT pathway in the regulation of cell cycle reentry and oxidative phosphorylation in the postmitotic cardiac myocytes.

13.
Artículo en Inglés | MEDLINE | ID: mdl-35079750

RESUMEN

The Cre-LoxP technology, including the tamoxifen (TAM) inducible MerCreMer (MCM), is increasingly used to delineate gene function, understand the disease mechanisms, and test therapeutic interventions. We set to determine the effects of TAM-MCM on cardiac myocyte transcriptome. Expression of the MCM was induced specifically in cardiac myocytes upon injection of TAM to myosin heavy chain 6-MCM (Myh6-Mcm) mice for 5 consecutive days. Cardiac function, myocardial histology, and gene expression (RNA-sequencing) were analyzed 2 weeks after TAM injection. A total of 346 protein coding genes (168 up- and 178 down-regulated) were differentially expressed. Transcript levels of 85 genes, analyzed by a reverse transcription-polymerase chain reaction in independent samples, correlated with changes in the RNA-sequencing data. The differentially expressed genes were modestly enriched for genes involved in the interferon response and the tumor protein 53 (TP53) pathways. The changes in gene expression were relatively small and mostly transient and had no discernible effects on cardiac function, myocardial fibrosis, and apoptosis or induction of double-stranded DNA breaks. Thus, TAM-inducible activation of MCM alters cardiac myocytes gene expression, provoking modest and transient interferon and DNA damage responses without exerting other discernible phenotypic effects. Thus, the effects of TAM-MCM on gene expression should be considered in discerning the bona fide changes that result from the targeting of the gene of interest.

14.
Wiley Interdiscip Rev RNA ; 13(4): e1704, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34856642

RESUMEN

The human genome is pervasively transcribed and yet only a small fraction of these RNAs (less than 2%) are known to code for proteins. The vast majority of the RNAs are classified as noncoding RNAs (ncRNAs) and are further subgrouped as small (shorter than 200 bases) and long noncoding RNAs. The ncRNAs have been identified in all three domains of life and regulate diverse cellular processes through transcriptional and posttranscriptional gene regulation. Most of these RNAs work in conjunction with proteins forming a wide array of base pairing interactions. The determinants of these base pairing interactions are now becoming more evident and show striking similarities among the diverse group of ncRNAs. Here we present a mechanistic overview of pairing between RNA-RNA or RNA-DNA that dictates the function of ncRNAs; we provide examples to illustrate that ncRNAs work through shared evolutionary mechanisms that encompasses a guide-target interaction, involving not only classical Watson-Crick but also noncanonical Wobble and Hoogsteen base pairing. We also highlight the similarities in target selection, proofreading, and the ruler mechanism of ncRNA-protein complexes that confers target specificity and target site selection. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA-Based Catalysis > RNA-Mediated Cleavage RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution.


Asunto(s)
ARN Largo no Codificante , ARN no Traducido , Humanos , Interferencia de ARN , ARN Largo no Codificante/genética , ARN no Traducido/genética
15.
Cardiovasc Res ; 118(6): 1466-1478, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-34132777

RESUMEN

AIMS: Arrhythmogenic cardiomyopathy (ACM) is a primary myocardial disease that typically manifests with cardiac arrhythmias, progressive heart failure, and sudden cardiac death (SCD). ACM is mainly caused by mutations in genes encoding desmosome proteins. Desmosomes are cell-cell adhesion structures and hubs for mechanosensing and mechanotransduction. The objective was to identify the dysregulated molecular and biological pathways in human ACM in the absence of overt heart failure. METHODS AND RESULTS: Transcriptomes in the right ventricular endomyocardial biopsy samples from three independent individuals carrying truncating mutations in the DSP gene and five control samples were analysed by RNA-Seq (discovery group). These cases presented with cardiac arrhythmias and had a normal right ventricular function. The RNA-Seq analysis identified ∼5000 differentially expressed genes (DEGs), which predicted suppression of the Hippo and canonical WNT pathways, among others. Dysregulated genes and pathways, identified by RNA-Seq, were tested for validation in the right and left ventricular tissues from five independent autopsy-confirmed ACM cases with defined mutations (validation group), who were victims of SCD and had no history of heart failure. Protein levels and nuclear localization of the cWNT and Hippo pathway transcriptional regulators were reduced in the right and left ventricular validation samples. In contrast, levels of acetyltransferase EP300, known to suppress the Hippo and canonical WNT pathways, were increased and its bona fide target TP53 was acetylated. RNA-Seq data identified apical junction, reflective of cell-cell attachment, as the most disrupted biological pathway, which were corroborated by disrupted desmosomes and intermediate filament structures. Moreover, the DEGs also predicted dysregulation of over a dozen canonical signal transduction pathways, including the Tec kinase and integrin signalling pathways. The changes were associated with increased apoptosis and fibro-adipogenesis in the ACM hearts. CONCLUSION: Altered apical junction structures are associated with activation of the EP300-TP53 and suppression of the Hippo/cWNT pathways in human ACM caused by defined mutations in the absence of an overt heart failure. The findings implicate altered mechanotransduction in the pathogenesis of ACM.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Cardiomiopatías , Insuficiencia Cardíaca , Arritmias Cardíacas/metabolismo , Cardiomiopatías/metabolismo , Muerte Súbita Cardíaca/etiología , Proteína p300 Asociada a E1A/metabolismo , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/genética , Humanos , Mecanotransducción Celular , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Vía de Señalización Wnt
18.
Circulation ; 143(22): 2169-2187, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33726497

RESUMEN

BACKGROUND: Arrhythmogenic cardiomyopathy (ACM) manifests with sudden death, arrhythmias, heart failure, apoptosis, and myocardial fibro-adipogenesis. The phenotype typically starts at the epicardium and advances transmurally. Mutations in genes encoding desmosome proteins, including DSP (desmoplakin), are major causes of ACM. METHODS: To delineate contributions of the epicardium to the pathogenesis of ACM, the Dsp allele was conditionally deleted in the epicardial cells in mice upon expression of tamoxifen-inducible Cre from the Wt1 locus. Wild type (WT) and Wt1-CreERT2:DspW/F were crossed to Rosa26mT/mG (R26mT/mG) dual reporter mice to tag the epicardial-derived cells with the EGFP (enhanced green fluorescent protein) reporter protein. Tagged epicardial-derived cells from adult Wt1-CreERT2:R26mT/mG and Wt1-CreERT2: R26mT/mG:DspW/F mouse hearts were isolated by fluorescence-activated cell staining and sequenced by single-cell RNA sequencing. RESULTS: WT1 (Wilms tumor 1) expression was progressively restricted postnatally and was exclusive to the epicardium by postnatal day 21. Expression of Dsp was reduced in the epicardial cells but not in cardiac myocytes in the Wt1-CreERT2:DspW/F mice. The Wt1-CreERT2:DspW/F mice exhibited premature death, cardiac dysfunction, arrhythmias, myocardial fibro-adipogenesis, and apoptosis. Single-cell RNA sequencing of ≈18 000 EGFP-tagged epicardial-derived cells identified genotype-independent clusters of endothelial cells, fibroblasts, epithelial cells, and a very small cluster of cardiac myocytes, which were confirmed on coimmunofluorescence staining of the myocardial sections. Differentially expressed genes between the paired clusters in the 2 genotypes predicted activation of the inflammatory and mitotic pathways-including the TGFß1 (transforming growth factor ß1) and fibroblast growth factors-in the epicardial-derived fibroblast and epithelial clusters, but predicted their suppression in the endothelial cell cluster. The findings were corroborated by analysis of gene expression in the pooled RNA-sequencing data, which identified predominant dysregulation of genes involved in epithelial-mesenchymal transition, and dysregulation of 146 genes encoding the secreted proteins (secretome), including genes in the TGFß1 pathway. Activation of the TGFß1 and its colocalization with fibrosis in the Wt1-CreERT2:R26mT/mG:DspW/F mouse heart was validated by complementary methods. CONCLUSIONS: Epicardial-derived cardiac fibroblasts and epithelial cells express paracrine factors, including TGFß1 and fibroblast growth factors, which mediate epithelial-mesenchymal transition, and contribute to the pathogenesis of myocardial fibrosis, apoptosis, arrhythmias, and cardiac dysfunction in a mouse model of ACM. The findings uncover contributions of the epicardial-derived cells to the pathogenesis of ACM.


Asunto(s)
Cardiomiopatías/fisiopatología , Comunicación Paracrina/inmunología , Pericardio/fisiopatología , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Animales , Cardiomiopatías/mortalidad , Modelos Animales de Enfermedad , Humanos , Ratones , Análisis de Supervivencia
19.
Cardiovasc Res ; 117(11): 2377-2394, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-33070193

RESUMEN

AIMS: Arrhythmogenic cardiomyopathy (ACM) encompasses a genetically heterogeneous group of myocardial diseases whose manifestations are sudden cardiac death, cardiac arrhythmias, heart failure, and in a subset fibro-adipogenic infiltration of the myocardium. Mutations in the TMEM43 gene, encoding transmembrane protein 43 (TMEM43) are known to cause ACM. The purpose of the study was to gain insights into the molecular pathogenesis of ACM caused by TMEM43 haploinsufficiency. METHODS AND RESULTS: The Tmem43 gene was specifically deleted in cardiac myocytes by crossing the Myh6-Cre and floxed Tmem43 mice. Myh6-Cre:Tmem43W/F mice showed an age-dependent phenotype characterized by an increased mortality, cardiac dilatation and dysfunction, myocardial fibrosis, adipogenesis, and apoptosis. Sequencing of cardiac myocyte transcripts prior to and after the onset of cardiac phenotype predicted early activation of the TP53 pathway. Increased TP53 activity was associated with increased levels of markers of DNA damage response (DDR), and a subset of senescence-associated secretary phenotype (SASP). Activation of DDR, TP53, SASP, and their selected downstream effectors, including phospho-SMAD2 and phospho-SMAD3 were validated by alternative methods, including immunoblotting. Expression of SASP was associated with epithelial-mesenchymal transition and age-dependent expression of myocardial fibrosis and apoptosis in the Myh6-Cre:Tmem43W/F mice. CONCLUSION: TMEM43 haploinsufficiency is associated with activation of the DDR and the TP53 pathways, which lead to increased expression of SASP and an age-dependent expression of a pro-fibrotic cardiomyopathy. Given that TMEM43 is a nuclear envelope protein and our previous data showing deficiency of another nuclear envelope protein, namely lamin A/C, activates the DDR/TP53 pathway, we surmise that DNA damage is a shared mechanism in the pathogenesis of cardiomyopathies caused by mutations involving nuclear envelope proteins.


Asunto(s)
Cardiomiopatías/metabolismo , Senescencia Celular , Daño del ADN , Reparación del ADN , Haploinsuficiencia , Proteínas de la Membrana/deficiencia , Miocitos Cardíacos/metabolismo , Animales , Apoptosis , Cardiomiopatías/genética , Cardiomiopatías/patología , Modelos Animales de Enfermedad , Fibrosis , Predisposición Genética a la Enfermedad , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Proteínas de la Membrana/genética , Ratones de la Cepa 129 , Ratones Noqueados , Miocitos Cardíacos/patología , Fenotipo , Fosforilación , Fenotipo Secretor Asociado a la Senescencia , Transducción de Señal , Proteína Smad2 , Proteína smad3/metabolismo , Factores de Tiempo , Factor de Crecimiento Transformador beta1/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
20.
J Am Heart Assoc ; 9(16): e015690, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32805188

RESUMEN

Background Mutations in the LMNA gene, encoding LMNA (lamin A/C), causes distinct disorders, including dilated cardiomyopathies, collectively referred to as laminopathies. The genes (coding and noncoding) and regulatory pathways controlled by LMNA in the heart are not completely defined. Methods and Results We analyzed cardiac transcriptome from wild-type, loss-of-function (Lmna-/-), and gain-of-function (Lmna-/- injected with adeno-associated virus serotype 9 expressing LMNA) mice with normal cardiac function. Deletion of Lmna (Lmna-/-) led to differential expression of 2193 coding and 629 long noncoding RNA genes in the heart (q<0.05). Re-expression of LMNA in the Lmna-/- mouse heart, completely rescued 501 coding and 208 non-coding and partially rescued 1862 coding and 607 lncRNA genes. Pathway analysis of differentially expressed genes predicted activation of transcriptional regulators lysine-specific demethylase 5A, lysine-specific demethylase 5B, tumor protein 53, and suppression of retinoblastoma 1, paired-like homeodomain 2, and melanocyte-inducing transcription factor, which were completely or partially rescued upon reexpression of LMNA. Furthermore, lysine-specific demethylase 5A and 5B protein levels were increased in the Lmna-/- hearts and were partially rescued upon LMNA reexpression. Analysis of biological function for rescued genes identified activation of tumor necrosis factor-α, epithelial to mesenchymal transition, and suppression of the oxidative phosphorylation pathway upon Lmna deletion and their restoration upon LMNA reintroduction in the heart. Restoration of the gene expression and transcriptional regulators in the heart was associated with improved cardiac function and increased survival of the Lmna-/- mice. Conclusions The findings identify LMNA-regulated cardiac genes and their upstream transcriptional regulators in the heart and implicate lysine-specific demethylase 5A and B as epigenetic regulators of a subset of the dysregulated genes in laminopathies.


Asunto(s)
Regulación de la Expresión Génica , Lamina Tipo A/fisiología , Laminopatías/genética , Miocardio/metabolismo , ARN Largo no Codificante/metabolismo , Elementos Reguladores de la Transcripción , Animales , Epigénesis Genética , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Ratones , Fenotipo , ARN Mensajero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...