Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Cell Rep Med ; 4(3): 100957, 2023 03 21.
Article En | MEDLINE | ID: mdl-36889319

Hyperpolarizing GABAAR currents, the unitary events that underlie synaptic inhibition, are dependent upon efficient Cl- extrusion, a process that is facilitated by the neuronal specific K+/Cl- co-transporter KCC2. Its activity is also a determinant of the anticonvulsant efficacy of the canonical GABAAR-positive allosteric: benzodiazepines (BDZs). Compromised KCC2 activity is implicated in the pathophysiology of status epilepticus (SE), a medical emergency that rapidly becomes refractory to BDZ (BDZ-RSE). Here, we have identified small molecules that directly bind to and activate KCC2, which leads to reduced neuronal Cl- accumulation and excitability. KCC2 activation does not induce any overt effects on behavior but prevents the development of and terminates ongoing BDZ-RSE. In addition, KCC2 activation reduces neuronal cell death following BDZ-RSE. Collectively, these findings demonstrate that KCC2 activation is a promising strategy to terminate BDZ-resistant seizures and limit the associated neuronal injury.


Status Epilepticus , Symporters , Mice , Animals , Benzodiazepines/pharmacology , Benzodiazepines/therapeutic use , Status Epilepticus/drug therapy , Seizures/metabolism , gamma-Aminobutyric Acid/metabolism , Symporters/metabolism
2.
Nat Commun ; 11(1): 3258, 2020 06 26.
Article En | MEDLINE | ID: mdl-32591533

Tauopathies are neurodegenerative diseases associated with accumulation of abnormal tau protein in the brain. Patient iPSC-derived neuronal cell models replicate disease-relevant phenotypes ex vivo that can be pharmacologically targeted for drug discovery. Here, we explored autophagy as a mechanism to reduce tau burden in human neurons and, from a small-molecule screen, identify the mTOR inhibitors OSI-027, AZD2014 and AZD8055. These compounds are more potent than rapamycin, and robustly downregulate phosphorylated and insoluble tau, consequently reducing tau-mediated neuronal stress vulnerability. MTORC1 inhibition and autophagy activity are directly linked to tau clearance. Notably, single-dose treatment followed by washout leads to a prolonged reduction of tau levels and toxicity for 12 days, which is mirrored by a sustained effect on mTORC1 inhibition and autophagy. This new insight into the pharmacodynamics of mTOR inhibitors in regulation of neuronal autophagy may contribute to development of therapies for tauopathies.


Autophagy , Neurons/metabolism , Protein Kinase Inhibitors/pharmacology , Stress, Physiological , Tauopathies/metabolism , tau Proteins/metabolism , Animals , Autophagy/drug effects , Cell Line , Cell Survival/drug effects , Female , Humans , Lysosomes/drug effects , Lysosomes/metabolism , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Middle Aged , Models, Biological , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neurons/drug effects , Phagosomes/drug effects , Phagosomes/metabolism , Phenotype , Rats, Wistar , Stress, Physiological/drug effects , TOR Serine-Threonine Kinases/metabolism , Tauopathies/pathology , Time Factors
3.
J Med Chem ; 61(8): 3491-3502, 2018 04 26.
Article En | MEDLINE | ID: mdl-29617572

BACE1 is responsible for the first step in APP proteolysis, leading to toxic Aß production, and has been indicated to play a key role in the pathogenesis of Alzheimer's disease. The related isoform BACE2 is thought to be involved in processing of the pigment cell-specific melanocyte protein. To avoid potential effects on pigmentation, we investigated the feasibility for developing isoform-selective BACE1 inhibitors. Cocrystal structures of 47 compounds were analyzed and clustered according to their selectivity profiles. Selective BACE1 inhibitors were found to exhibit two distinct conformational features proximal to the flap and the S3 subpocket. Several new molecules were designed and tested to make use of this observation. The combination of a pyrimidinyl C-ring and a methylcyclohexyl element resulted in lead molecule 28, which exhibited ∼50-fold selectivity. Compared to a nonselective BACE1/2 inhibitor, 28 showed significantly less inhibition of PMEL processing in human melanocytes, indicating good functional selectivity of this inhibitor class.


Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Protease Inhibitors/pharmacology , Amyloid Precursor Protein Secretases/chemistry , Amyloid beta-Peptides/metabolism , Animals , Aspartic Acid Endopeptidases/chemistry , Brain/metabolism , Catalytic Domain , Dogs , Female , Humans , Madin Darby Canine Kidney Cells , Male , Mice, Inbred C57BL , Molecular Structure , Oxazoles/chemical synthesis , Oxazoles/chemistry , Oxazoles/pharmacokinetics , Oxazoles/pharmacology , Peptide Fragments/metabolism , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacokinetics , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/chemistry , Rats , Spiro Compounds/chemical synthesis , Spiro Compounds/chemistry , Spiro Compounds/pharmacokinetics , Spiro Compounds/pharmacology , Structure-Activity Relationship , gp100 Melanoma Antigen/metabolism
4.
J Med Chem ; 60(16): 7029-7042, 2017 08 24.
Article En | MEDLINE | ID: mdl-28682065

A series of acidic diaryl ether heterocyclic sulfonamides that are potent and subtype selective NaV1.7 inhibitors is described. Optimization of early lead matter focused on removal of structural alerts, improving metabolic stability and reducing cytochrome P450 inhibition driven drug-drug interaction concerns to deliver the desired balance of preclinical in vitro properties. Concerns over nonmetabolic routes of clearance, variable clearance in preclinical species, and subsequent low confidence human pharmacokinetic predictions led to the decision to conduct a human microdose study to determine clinical pharmacokinetics. The design strategies and results from preclinical PK and clinical human microdose PK data are described leading to the discovery of the first subtype selective NaV1.7 inhibitor clinical candidate PF-05089771 (34) which binds to a site in the voltage sensing domain.


NAV1.7 Voltage-Gated Sodium Channel/metabolism , Phenyl Ethers/pharmacology , Sulfonamides/pharmacology , Voltage-Gated Sodium Channel Blockers/pharmacology , Cell Line , Cytochrome P-450 CYP2C9/metabolism , Cytochrome P-450 CYP2C9 Inhibitors/chemical synthesis , Cytochrome P-450 CYP2C9 Inhibitors/chemistry , Cytochrome P-450 CYP2C9 Inhibitors/pharmacokinetics , Cytochrome P-450 CYP2C9 Inhibitors/pharmacology , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A Inhibitors/chemical synthesis , Cytochrome P-450 CYP3A Inhibitors/chemistry , Cytochrome P-450 CYP3A Inhibitors/pharmacokinetics , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Drug Design , Humans , Microsomes, Liver/metabolism , NAV1.7 Voltage-Gated Sodium Channel/chemistry , Phenyl Ethers/chemical synthesis , Phenyl Ethers/chemistry , Phenyl Ethers/pharmacokinetics , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Sulfonamides/pharmacokinetics , Voltage-Gated Sodium Channel Blockers/chemical synthesis , Voltage-Gated Sodium Channel Blockers/chemistry , Voltage-Gated Sodium Channel Blockers/pharmacokinetics
5.
Xenobiotica ; 42(1): 94-106, 2012 Jan.
Article En | MEDLINE | ID: mdl-22035569

Early prediction of human pharmacokinetics (PK) and drug-drug interactions (DDI) in drug discovery and development allows for more informed decision making. Physiologically based pharmacokinetic (PBPK) modelling can be used to answer a number of questions throughout the process of drug discovery and development and is thus becoming a very popular tool. PBPK models provide the opportunity to integrate key input parameters from different sources to not only estimate PK parameters and plasma concentration-time profiles, but also to gain mechanistic insight into compound properties. Using examples from the literature and our own company, we have shown how PBPK techniques can be utilized through the stages of drug discovery and development to increase efficiency, reduce the need for animal studies, replace clinical trials and to increase PK understanding. Given the mechanistic nature of these models, the future use of PBPK modelling in drug discovery and development is promising, however, some limitations need to be addressed to realize its application and utility more broadly.


Drug Discovery/methods , Models, Biological , Pharmaceutical Preparations/metabolism , Drug Interactions , Drug-Related Side Effects and Adverse Reactions , Humans , Ketoconazole/administration & dosage , Ketoconazole/pharmacokinetics , Ketoconazole/pharmacology , Pharmaceutical Preparations/blood , Pharmacokinetics , Pyrazoles/administration & dosage , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Sulfones/administration & dosage , Sulfones/pharmacokinetics , Sulfones/pharmacology
...