Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Chemphyschem ; : e202400277, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38606486

The electronic origins of the computed optical rotations of the simplest chiral and achiral chemical knots with comparatively simple compositions and large, anticipated magnetoelectric polarizabilities are provided. Linear response theory (LRT) is used to calculate the gyration at 1064 nm of two knotted polyyne chains, topological stereoisomers of cyclo[60]carbon. One isomer is analogous to the trefoil knot with approximate D3 symmetry and the other to the figure eight knot with approximate S4 symmetry. The response in each case can be attributed largely to the magnetic dipole term that arises in a near degenerate E-like excited state. An oriented achiral figure eight knot is as optically active in some directions as the chiral knot in any direction, and its absolute eigenvalues are larger.

2.
Chirality ; 35(11): 838-845, 2023 Nov.
Article En | MEDLINE | ID: mdl-37226985

Linear polyynes of the formula C18 H2 (symmetry D∞h ) were bent in silico by progressively introducing CCC angles less than 180°. The bent structures (symmetry C2v ) were then twisted by introducing torsion angles across the CCCC segments by as much as 60°. The gyration tensors of these 19 structures (linear, bent, and twisted) were computed by linear response methods. Bending is massively generative of optical activity in oriented structures, even achiral structures, whereas twisting in conjunction with bending, serves to linearize the molecules and diminish maximally observable optical activity. This computational exercise is intended to unbind the infelicitous linkage of optical activity and chirality, which is only meaningful in isotropic media. Although bent structures are not optically active in solution-the spatial average of the optical activity is necessarily zero-solution measurements that deliver the spatial averages are a special class of measurements, albeit the overwhelmingly most common chiroptical measurements, that prejudice our common understanding of how π-conjugated structures generate gyration. Bending is far more effective than twisting at generating optical activity along some directions for oriented structures. The respective contributions from the transition electric dipole-magnetic dipole polarizability and the transition electric dipole-electric quadrupole polarizability are compared.

...