Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 42(4): 112380, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37061916

RESUMEN

Recent advances in synthetic embryology have opened new avenues for understanding the complex events controlling mammalian peri-implantation development. Here, we show that mouse embryonic stem cells (ESCs) solely exposed to chemical inhibition of SUMOylation generate embryo-like structures comprising anterior neural and trunk-associated regions. HypoSUMOylation-instructed ESCs give rise to spheroids that self-organize into gastrulating structures containing cell types spatially and functionally related to embryonic and extraembryonic compartments. Alternatively, spheroids cultured in a droplet microfluidic device form elongated structures that undergo axial organization reminiscent of natural embryo morphogenesis. Single-cell transcriptomics reveals various cellular lineages, including properly positioned anterior neuronal cell types and paraxial mesoderm segmented into somite-like structures. Transient SUMOylation suppression gradually increases DNA methylation genome wide and repressive mark deposition at Nanog. Interestingly, cell-to-cell variations in SUMOylation levels occur during early embryogenesis. Our approach provides a proof of principle for potentially powerful strategies to explore early embryogenesis by targeting chromatin roadblocks of cell fate change.


Asunto(s)
Embrión de Mamíferos , Sumoilación , Animales , Ratones , Embrión de Mamíferos/metabolismo , Células Madre Embrionarias/metabolismo , Desarrollo Embrionario , Diferenciación Celular/fisiología , Mamíferos
2.
Genes Dev ; 37(7-8): 336-350, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-37072228

RESUMEN

The majority of our genome is composed of repeated DNA sequences that assemble into heterochromatin, a highly compacted structure that constrains their mutational potential. How heterochromatin forms during development and how its structure is maintained are not fully understood. Here, we show that mouse heterochromatin phase-separates after fertilization, during the earliest stages of mammalian embryogenesis. Using high-resolution quantitative imaging and molecular biology approaches, we show that pericentromeric heterochromatin displays properties consistent with a liquid-like state at the two-cell stage, which change at the four-cell stage, when chromocenters mature and heterochromatin becomes silent. Disrupting the condensates results in altered transcript levels of pericentromeric heterochromatin, suggesting a functional role for phase separation in heterochromatin function. Thus, our work shows that mouse heterochromatin forms membrane-less compartments with biophysical properties that change during development and provides new insights into the self-organization of chromatin domains during mammalian embryogenesis.


Asunto(s)
Cromatina , Heterocromatina , Animales , Ratones , Embrión de Mamíferos , Genoma , Mamíferos/genética
3.
Biomolecules ; 10(8)2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32751168

RESUMEN

Red blood cell (RBC) deformability is altered in inherited RBC disorders but the mechanism behind this is poorly understood. Here, we explored the molecular, biophysical, morphological, and functional consequences of α-spectrin mutations in a patient with hereditary elliptocytosis (pEl) almost exclusively expressing the Pro260 variant of SPTA1 and her mother (pElm), heterozygous for this mutation. At the molecular level, the pEI RBC proteome was globally preserved but spectrin density at cell edges was increased. Decreased phosphatidylserine vs. increased lysophosphatidylserine species, and enhanced lipid peroxidation, methemoglobin, and plasma acid sphingomyelinase (aSMase) activity were observed. At the biophysical level, although membrane transversal asymmetry was preserved, curvature at RBC edges and rigidity were increased. Lipid domains were altered for membrane:cytoskeleton anchorage, cholesterol content and response to Ca2+ exchange stimulation. At the morphological and functional levels, pEl RBCs exhibited reduced size and circularity, increased fragility and impaired membrane Ca2+ exchanges. The contribution of increased membrane curvature to the pEl phenotype was shown by mechanistic experiments in healthy RBCs upon lysophosphatidylserine membrane insertion. The role of lipid domain defects was proved by cholesterol depletion and aSMase inhibition in pEl. The data indicate that aberrant membrane content and biophysical properties alter pEl RBC morphology and functionality.


Asunto(s)
Eliptocitosis Hereditaria/patología , Membrana Eritrocítica/patología , Eritrocitos/patología , Colesterol/análisis , Colesterol/metabolismo , Eliptocitosis Hereditaria/metabolismo , Membrana Eritrocítica/química , Membrana Eritrocítica/metabolismo , Eritrocitos/química , Eritrocitos/metabolismo , Humanos , Lisofosfolípidos/análisis , Lisofosfolípidos/metabolismo , Fluidez de la Membrana , Microdominios de Membrana/química , Microdominios de Membrana/patología , Estrés Oxidativo
4.
EMBO Rep ; 21(1): e48354, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31849178

RESUMEN

Pluripotent stem cells are thought of as a surrogate of early developmental stages that sustain the capacity to generate all cell types in the body, thereby constituting an invaluable tool to address the mechanisms underlying cellular plasticity. In the mouse, cells resembling totipotent 2-cell-stage embryos (2-cell-like cells) arise at a very low frequency in embryonic stem cell (ESC) cultures. However, the extent to which these early-embryonic-like cells recapitulate the molecular features of the early embryo is unclear. Here, we have undertaken a characterization of some of the metabolic features of early-embryonic-like cells in culture. Our data indicate that early-embryonic-like cells exhibit decreased glycolytic and respiratory activity, lower levels of reactive oxygen species and increased glucose uptake, suggesting a shift of the metabolic programme during 2-cell-like cell reprogramming. Accordingly, we find that 2-cell-like cells can be induced by defined metabolites. Thus, in addition to their transcriptional and chromatin features, 2-cell-like cells recapitulate some of the metabolic features of their in vivo counterpart. Altogether, our work underscores a distinct metabolic state of early-embryonic-like cells and identifies compounds that can induce their emergence in vitro.


Asunto(s)
Células Madre Embrionarias , Células Madre Pluripotentes , Animales , Diferenciación Celular , Reprogramación Celular , Cromatina , Embrión de Mamíferos , Ratones
5.
EMBO Rep ; 20(12): e47952, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31701657

RESUMEN

In most eukaryotes, constitutive heterochromatin is associated with H3K9me3 and HP1α. The latter has been shown to play a role in heterochromatin formation through liquid-liquid phase separation. However, many other proteins are known to regulate and/or interact with constitutive heterochromatic regions in several species. We postulate that some of these heterochromatic proteins may play a role in the regulation of heterochromatin formation by liquid-liquid phase separation. Indeed, an analysis of the constitutive heterochromatin proteome shows that proteins associated with constitutive heterochromatin are significantly more disordered than a random set or a full nucleome set of proteins. Interestingly, their expression begins low and increases during preimplantation development. These observations suggest that the preimplantation embryo is a useful model to address the potential role for phase separation in heterochromatin formation, anticipating exciting research in the years to come.


Asunto(s)
Blastocisto/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Heterocromatina/metabolismo , Histonas/metabolismo , Animales , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/aislamiento & purificación , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Heterocromatina/genética , Código de Histonas , Histonas/aislamiento & purificación , Proteínas Intrínsecamente Desordenadas/aislamiento & purificación , Proteínas Intrínsecamente Desordenadas/metabolismo , Espectrometría de Masas , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA