Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pers Med ; 11(8)2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34442334

RESUMEN

Cytochrome P450 1A2 (CYP1A2), which accounts for approximately 13% of the total hepatic cytochrome content, catalyzes the metabolic reactions of approximately 9% of frequently used drugs, including theophylline and olanzapine. Substantial inter-individual differences in enzymatic activity have been observed among patients, which could be caused by genetic polymorphisms. Therefore, we functionally characterized 21 novel CYP1A2 variants identified in 4773 Japanese individuals by determining the kinetic parameters of phenacetin O-deethylation. Our results showed that most of the evaluated variants exhibited decreased or no enzymatic activity, which may be attributed to potential structural alterations. Notably, the Leu98Gln, Gly233Arg, Ser380del Gly454Asp, and Arg457Trp variants did not exhibit quantifiable enzymatic activity. Additionally, three-dimensional (3D) docking analyses were performed to further understand the underlying mechanisms behind variant pharmacokinetics. Our data further suggest that despite mutations occurring on the protein surface, accumulating interactions could result in the impairment of protein function through the destabilization of binding regions and changes in protein folding. Therefore, our findings provide additional information regarding rare CYP1A2 genetic variants and how their underlying effects could clarify discrepancies noted in previous phenotypical studies. This would allow the improvement of personalized therapeutics and highlight the importance of identifying and characterizing rare variants.

2.
J Pers Med ; 11(2)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540768

RESUMEN

Cytochrome P450 2C9 (CYP2C9) is an important drug-metabolizing enzyme that contributes to the metabolism of approximately 15% of clinically used drugs, including warfarin, which is known for its narrow therapeutic window. Interindividual differences in CYP2C9 enzymatic activity caused by CYP2C9 genetic polymorphisms lead to inconsistent treatment responses in patients. Thus, in this study, we characterized the functional differences in CYP2C9 wild-type (CYP2C9.1), CYP2C9.2, CYP2C9.3, and 12 rare novel variants identified in 4773 Japanese individuals. These CYP2C9 variants were heterologously expressed in 293FT cells, and the kinetic parameters (Km, kcat, Vmax, catalytic efficiency, and CLint) of (S)-warfarin 7-hydroxylation and tolbutamide 4-hydroxylation were estimated. From this analysis, almost all novel CYP2C9 variants showed significantly reduced or null enzymatic activity compared with that of the CYP2C9 wild-type. A strong correlation was found in catalytic efficiencies between (S)-warfarin 7-hydroxylation and tolbutamide 4-hydroxylation among all studied CYP2C9 variants. The causes of the observed perturbation in enzyme activity were evaluated by three-dimensional structural modeling. Our findings could clarify a part of discrepancies among genotype-phenotype associations based on the novel CYP2C9 rare allelic variants and could, therefore, improve personalized medicine, including the selection of the appropriate warfarin dose.

3.
Drug Metab Dispos ; 49(3): 212-220, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33384383

RESUMEN

CYP3A4 is among the most abundant liver and intestinal drug-metabolizing cytochrome P450 enzymes, contributing to the metabolism of more than 30% of clinically used drugs. Therefore, interindividual variability in CYP3A4 activity is a frequent cause of reduced drug efficacy and adverse effects. In this study, we characterized wild-type CYP3A4 and 40 CYP3A4 variants, including 11 new variants, detected among 4773 Japanese individuals by assessing CYP3A4 enzymatic activities for two representative substrates (midazolam and testosterone). The reduced carbon monoxide-difference spectra of wild-type CYP3A4 and 31 CYP3A4 variants produced with our established mammalian cell expression system were determined by measuring the increase in maximum absorption at 450 nm after carbon monoxide treatment. The kinetic parameters of midazolam and testosterone hydroxylation by wild-type CYP3A4 and 29 CYP3A4 variants (K m , k cat , and catalytic efficiency) were determined, and the causes of their kinetic differences were evaluated by three-dimensional structural modeling. Our findings offer insight into the mechanism underlying interindividual differences in CYP3A4-dependent drug metabolism. Moreover, our results provide guidance for improving drug administration protocols by considering the information on CYP3A4 genetic polymorphisms. SIGNIFICANCE STATEMENT: CYP3A4 metabolizes more than 30% of clinically used drugs. Interindividual differences in drug efficacy and adverse-effect rates have been linked to ethnicity-specific differences in CYP3A4 gene variants in Asian populations, including Japanese individuals, indicating the presence of CYP3A4 polymorphisms resulting in the increased expression of loss-of-function variants. This study detected alterations in CYP3A4 activity due to amino acid substitutions by assessing the enzymatic activities of coding variants for two representative CYP3A4 substrates.


Asunto(s)
Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Variación Genética/fisiología , Midazolam/metabolismo , Esteroide Hidroxilasas/metabolismo , Testosterona/metabolismo , Estudios de Cohortes , Citocromo P-450 CYP3A/química , Moduladores del GABA/metabolismo , Células HEK293 , Humanos , Hidroxilación/fisiología , Estructura Secundaria de Proteína
4.
Sci Rep ; 10(1): 14193, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32843676

RESUMEN

The evaluation of Cytochrome P450 (CYP) enzymatic activity is essential to estimate drug pharmacokinetics. Numerous CYP allelic variants have been identified; the functional characterisation of these variants is required for their application in precision medicine. Results from heterologous expression systems using mammalian cells can be integrated in in vivo studies; however, other systems such as E. coli, bacteria, yeast, and baculoviruses are generally used owing to the difficulty in expressing high CYP levels in mammalian cells. Here, by optimising transfection and supplementing conditions, we developed a heterologous expression system using 293FT cells to evaluate the enzymatic activities of three CYP isoforms (CYP1A2, CYP2C9, and CYP3A4). Moreover, we established co-expression with cytochrome P450 oxidoreductase and cytochrome b5. This expression system would be a potential complementary or beneficial alternative approach for the pharmacokinetic evaluation of clinically used and developing drugs in vitro.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Ingeniería Genética/métodos , Proteínas Recombinantes/genética , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Citocromos b5/genética , Citocromos b5/metabolismo , Expresión Génica/genética , Expresión Génica/fisiología , Células HEK293/metabolismo , Humanos , NADPH-Ferrihemoproteína Reductasa/genética , NADPH-Ferrihemoproteína Reductasa/metabolismo , Oxidación-Reducción , Isoformas de Proteínas , Transfección/métodos
5.
Drug Metab Pharmacokinet ; 35(1): 89-101, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32037159

RESUMEN

While CYP2D6 allele and phenotype frequencies have been extensively studied, currently, very little ethnically specific data is available regarding the East African and South Pacific region, including Kenya and Vanuatu. The absence of information regarding gene polymorphisms and their resulting clinical effects in these populations may hinder treatment strategies and patient outcome. Given the scarceness of CYP2D6 related data in these populations, the purpose of this study was to perform a pharmacogenomic analysis of the Kenyan and Ni-Vanuatu population and ultimately characterize the enzymatic properties of eight novel CYP2D6 variant proteins expressed in 293FT cells in vitro using dextromethorphan as a substrate. Our study revealed a prevalence of functional alleles in both populations a low frequency for decreased function defining genotypes in the Ni-Vanuatu population, with approximately 36% of our Kenyan subjects presenting substrate-dependent decreased function alleles. Additionally, 6 variants (P171L, G306R, V402L, K1, K2, and K3) showed significantly reduced intrinsic clearance compared to wild-type CYP2D6.1. Our findings aid in efforts to bridge the gap between pharmacogenomic analysis and clinical application, by providing useful information in the development of ethnic-specific strategies as well as stressing the importance of population-specific genotyping when conducting multi-regional clinical trials and designing therapeutic strategies.


Asunto(s)
Alelos , Citocromo P-450 CYP2D6/genética , Dextrometorfano/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Desmetilación , Variación Genética/genética , Genotipo , Células HEK293 , Humanos , Japón , Polimorfismo Genético/genética
6.
Drug Metab Pharmacokinet ; 33(6): 250-257, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30366777

RESUMEN

Cytochrome P450 2D6 (CYP2D6) is responsible for the metabolic activation of primaquine, an antimalarial drug. CYP2D6 is genetically polymorphic, and these polymorphisms are associated with interindividual variations observed in the therapeutic efficacy of primaquine. To further understand this association, we performed in vitro enzymatic analyses of the wild-type CYP2D6.1 and 49 CYP2D6 allelic variants, which were expressed in 293FT cells, using primaquine as a substrate. The concentrations of CYP2D6 variant holoenzymes were measured by using carbon monoxide (CO)-reduced difference spectroscopy, and the wild type and 27 variants showed a peak at 450 nm. The kinetic parameters Km, Vmax, and intrinsic clearance (Vmax/Km) of primaquine 5-hydroxylation were characterized. The kinetic parameters of the wild type and 16 variants were measured, but the values for the remaining 33 variants could not be determined because of low metabolite concentrations. Among the variants, six (i.e., CYP2D6.17, .18, .35, .39, .53, and .70) showed significantly reduced intrinsic clearance compared with that of CYP2D6.1. Three-dimensional structural modeling analysis was performed to elucidate the mechanism of changes in the kinetics of CYP2D6 variants. Our findings provide insights into the allele-specific activity of CYP2D6 for primaquine, which could be clinically useful for malaria treatment and eradication efforts.


Asunto(s)
Alelos , Citocromo P-450 CYP2D6/genética , Variación Genética/genética , Primaquina/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Células HEK293 , Humanos , Hidroxilación , Estructura Molecular , Primaquina/análogos & derivados , Primaquina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...