Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Sens ; 9(8): 4047-4057, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39093722

RESUMEN

Exhaled breath electrochemical sensing is a promising biomedical technology owing to its portability, painlessness, cost-effectiveness, and user-friendliness. Here, we present a novel approach for target analysis in exhaled breath by integrating a comfortable paper-based collector into an N95 face mask, providing a universal solution for analyzing several biomarkers. As a model analyte, we detected SARS-CoV-2 spike protein from the exhaled breath by sampling the target analyte into the collector, followed by its detection out of the N95 face mask using a magnetic bead-based electrochemical immunosensor. This approach was designed to avoid any contact between humans and the chemicals. To simulate human exhaled breath, untreated saliva samples were nebulized on the paper collector, revealing a detection limit of 1 ng/mL and a wide linear range of 3.7-10,000 ng/mL. Additionally, the developed immunosensor exhibited high selectivity toward the SARS-CoV-2 spike protein, compared to other airborne microorganisms, and the SARS-CoV-2 nucleocapsid protein. Accuracy assessments were conducted by analyzing the simulated breath samples spiked with varying concentrations of SARS-CoV-2 spike protein, resulting in satisfactory recovery values (ranging from 97 ± 4 to 118 ± 1%). Finally, the paper-based hybrid immunosensor was successfully applied for the detection of SARS-CoV-2 in real human exhaled breath samples. The position of the collector in the N95 mask was evaluated as well as the ability of this paper-based analytical tool to identify the positive patient.


Asunto(s)
Técnicas Biosensibles , Pruebas Respiratorias , COVID-19 , Papel , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , Pruebas Respiratorias/instrumentación , Pruebas Respiratorias/métodos , COVID-19/diagnóstico , COVID-19/virología , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Glicoproteína de la Espiga del Coronavirus/análisis , Glicoproteína de la Espiga del Coronavirus/inmunología , Inmunoensayo/instrumentación , Inmunoensayo/métodos , Límite de Detección , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Espiración , Respiradores N95 , Saliva/química , Saliva/virología
2.
J Mater Chem B ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141010

RESUMEN

Anticancer drugs inhibit DNA replication by intercalating between DNA base pairs, forming covalent bonds with nucleotide bases, or binding to the DNA groove. To develop safer drugs, novel molecular structures with alternative binding mechanisms are essential. Stable boron hydrides offer a promising alternative for cancer therapy, opening up additional options like boron neutron capture therapy based on 10B and thermal neutron beams or proton boron fusion therapy using 11B and proton beams. These therapies are more efficient when the boron compound is ideally located inside cancer cells, particularly in the nucleus. Current cancer treatments often utilize small, polycyclic, aromatic, planar molecules that intercalate between ds-DNA base pairs, requiring only a spacing of approximately 0.34 nm. In this paper, we demonstrate another type of intercalation. Notably, [3,3'-Fe(1,2-C2B9H11)2]-, ([o-FESAN]-), a compact 3D molecule measuring 1.1 nm × 0.6 nm, can as well intercalate by strong non-bonding interactions preferentially with guanine. Unlike known intercalators, which are positive or neutral, [o-FESAN]- is a negative species and when an [o-FESAN]- molecule approaches the negatively charged DNA phosphate chain an anion-anion interaction consistently anti-electrostatic via Ccluster-H⋯O-P bonds occurs. Then, when more molecules approach, an elongated outstandingly self-assembled structure of [o-FESAN]--[o-FESAN]- forms moving anions towards the interthread region to interact with base pairs and form aggregates of four [o-FESAN]- anions per base pair. These aggregates, in this environment, are generated by Ccluster-H⋯O-C, N-H⋯H-B and Ccluster-H⋯H-B interactions. The ferrabis(dicarbollide) boron-rich small molecules not only effectively penetrate the nucleus but also intercalate with ds-DNA, making them promising for cancer treatment. This amphiphilic anionic molecule, used as a carrier-free drug, can enhance radiotherapy in a multimodal perspective, providing healthcare professionals with improved tools for cancer treatment. This work demonstrates these findings with a plethora of techniques.

3.
Biosens Bioelectron ; 261: 116500, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38896979

RESUMEN

In this work, we present an electrochemical sensor for fast, low-cost, and easy detection of the SARS-CoV-2 spike protein in infected patients. The sensor is based on a selected combination of nanomaterials with a specific purpose. A bioconjugate formed by Few-layer bismuthene nanosheets (FLB) and tetrahedral DNA nanostructures (TDNs) is immobilized on Carbon Screen-Printed Electrodes (CSPE). The TDNs contain on the top vertex an aptamer that specifically binds to the SARS-CoV-2 spike protein, and a thiol group at the three basal vertices to anchor to the FLB. The TDNs are also marked with a redox indicator, Azure A (AA), which allows the direct detection of SARS-CoV-2 spike protein through changes in the current intensity of its electrolysis before and after the biorecognition reaction. The developed sensor can detect SARS-CoV-2 spike protein with a detection limit of 1.74 fg mL-1 directly in nasopharyngeal swab human samples. Therefore, this study offers a new strategy for rapid virus detection since it is versatile enough for different viruses and pathogens.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Límite de Detección , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2/aislamiento & purificación , Técnicas Biosensibles/métodos , Humanos , Glicoproteína de la Espiga del Coronavirus/análisis , Glicoproteína de la Espiga del Coronavirus/química , COVID-19/virología , COVID-19/diagnóstico , Técnicas Electroquímicas/métodos , Nanoestructuras/química , ADN/química , Aptámeros de Nucleótidos/química
4.
Talanta ; 276: 126293, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38788383

RESUMEN

In this work we present the development of an electrochemiluminescence aptasensor based on electrografting molybdenum disulphide nanosheets functionalized with diazonium salt (MoS2-N2+) upon screen-printed electrodes of graphene (SPEs GPH) for viral proteins detection. In brief, this aptasensor consists of SPEs GPH electrografted with MoS2-N2+ and modified with a thiolated aptamer, which can specifically recognize the target protein analyte. In this case, we have used SARS-CoV-2 spike protein as model protein. Electrochemiluminescence detection was performed by using the [Ru(bpy)3]2+/TPRA (tripropylamine) system, which allows the specific detection of the SARS-CoV-2 spike protein easily and rapidly with a detection limit of 9.74 fg/mL and a linear range from 32.5 fg/mL to 50.0 pg/mL. Moreover, the applicability of the aptasensor has been confirmed by the detection of the protein directly in human saliva samples. Comparing our device with a traditional saliva antigen test, our aptasensor can detect the spike protein even when the saliva antigen test gives a negative result.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Disulfuros , Técnicas Electroquímicas , Grafito , Mediciones Luminiscentes , Molibdeno , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Grafito/química , Disulfuros/química , Molibdeno/química , Aptámeros de Nucleótidos/química , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/inmunología , Humanos , Mediciones Luminiscentes/métodos , Glicoproteína de la Espiga del Coronavirus/análisis , Límite de Detección , COVID-19/diagnóstico , COVID-19/virología , Electrodos , Saliva/química , Saliva/virología
5.
Talanta ; 269: 125405, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37984235

RESUMEN

In this work we describe a highly sensitive method based on a biocatalyzed electrochemiluminescence approach. The system combines, for the first time, the use of few-layer bismuthene (FLB) as a platform for the oriented immobilization of tetrahedral DNA nanostructures (TDNs) specifically designed and synthetized to detect a specific SARS-CoV-2 gene sequence. In one of its vertices, these TDNs contain a DNA capture probe of the open reading frame 1 ab (ORF1ab) of the virus, available for the biorecognition of the target DNA/RNA. At the other three vertices, there are thiol groups that enable the stable anchoring/binding to the FLB surface. This novel geometry/approach enables not only the binding of the TDNs to surfaces, but also the orientation of the capture probe in a direction normal to the bismuthine surface so that it is readily accessible for binding/recognition of the specific SARS-CoV-2 sequence. The analytical signal is based on the anodic electrochemiluminescence (ECL) intensity of luminol which, in turn, arises as a result of the reaction with H2O2, generated by the enzymatic reaction of glucose oxidation, catalyzed by the biocatalytic label avidin-glucose oxidase conjugate (Av-GOx), which acts as co-reactant in the electrochemiluminescent reaction. The method exhibits a limit of detection (LOD) of 4.31 aM and a wide linear range from 14.4 aM to 1.00 µM, and its applicability was confirmed by detecting SARS-CoV-2 in nasopharyngeal samples from COVID-19 patients without the need of any amplification process.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Humanos , Peróxido de Hidrógeno/química , Técnicas Biosensibles/métodos , ADN/genética , ADN/química , Nanoestructuras/química , Límite de Detección , Sondas de ADN , Reacción en Cadena de la Polimerasa , Mediciones Luminiscentes/métodos , Técnicas Electroquímicas/métodos
6.
Talanta ; 270: 125497, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38142611

RESUMEN

In this work we present the preparation of a 2D molybdenum disulphide nanosheets (2D-MoS2) and tetrahedral DNA nanostructures (TDNs) bioconjugate, and its application to the development of a bioassay for rapid and easy virus detection. The bioconjugate has been prepared by using TDNs carrying the capture probe labelled with 6-carboxyfluoresceine (6-FAM). As case of study to assess the utility of the assay developed, we have chosen the SARS-CoV-2 virus. Hence, as probe we have used a DNA sequence complementary to a region of the SARS-CoV-2 ORF1ab gene (TDN-ORF-FAM). This 6-FAM labelled capture probe is located on the top vertex of the tetrahedral DNA nanostructure, the three left vertices of TDNs have a thiol group. These TDNs are bounded to 2D-MoS2 surface through the three thiol groups, allowing the capture probe to be oriented to favour the biorecognition reaction with the analyte. This biorecognition resulting platform has finally been challenged to the detection of the SARS-CoV-2 ORF1ab gene sequence as the target model by measuring fluorescence before and after the hybridization event with a detection limit of 19.7fM. Furthermore, due to high sensitivity of the proposed methodology, it has been applied to directly detect the virus in nasopharyngeal samples of infected patients without the need of any amplification step. The developed bioassay has a wide range of applicability since it can be applied to the detection of any pathogen by changing the probe corresponding to the target sequence. Thus, a novel, hands-on strategy for rapid pathogen detection has proposed and has a high potential application value in the early diagnosis of infections causes by virus or bacteria.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Humanos , Molibdeno , ADN/química , Hibridación de Ácido Nucleico , Nanoestructuras/química , Compuestos de Sulfhidrilo , Técnicas Biosensibles/métodos
7.
Biosensors (Basel) ; 13(3)2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36979560

RESUMEN

In this work, we present the combination of two different types of nanomaterials, 2D molybdenum disulfide nanosheets (MoS2-NS) and zero-dimensional carbon nanodots (CDs), for the development of a new electrochemiluminescence (ECL) platform for the early detection and quantification of the biomarker human epidermal growth factor receptor 2 (HER2), whose overexpression is associated with breast cancer. MoS2-NS are used as an immobilization platform for the thiolated aptamer, which can recognize the HER2 epitope peptide with high affinity, and CDs act as coreactants of the anodic oxidation of the luminophore [Ru(bpy)3]2+. The HER2 biomarker is detected by changes in the ECL signal of the [Ru(bpy)3]2+/CD system, with a low detection limit of 1.84 fg/mL and a wide linear range. The proposed method has been successfully applied to detect the HER2 biomarker in human serum samples.


Asunto(s)
Técnicas Biosensibles , Neoplasias de la Mama , Humanos , Femenino , Carbono , Biomarcadores de Tumor , Molibdeno , Neoplasias de la Mama/diagnóstico , Fotometría , Mediciones Luminiscentes/métodos , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Límite de Detección
8.
Sens Actuators B Chem ; 369: 132217, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35755181

RESUMEN

The development of DNA-sensing platforms based on new synthetized Methylene Blue functionalized carbon nanodots combined with different shape gold nanostructures (AuNs), as a new pathway to develop a selective and sensitive methodology for SARS-CoV-2 detection is presented. A mixture of gold nanoparticles and gold nanotriangles have been synthetized to modify disposable electrodes that act as an enhanced nanostructured electrochemical surface for DNA probe immobilization. On the other hand, modified carbon nanodots prepared a la carte to contain Methylene Blue (MB-CDs) are used as electrochemical indicators of the hybridization event. These MB-CDs, due to their structure, are able to interact differently with double and single-stranded DNA molecules. Based on this strategy, target sequences of the SARS-CoV-2 virus have been detected in a straightforward way and rapidly with a detection limit of 2.00 aM. Moreover, this platform allows the detection of the SARS-CoV-2 sequence in the presence of other viruses, and also a single nucleotide polymorphism (SNPs). The developed approach has been tested directly on RNA obtained from nasopharyngeal samples from COVID-19 patients, avoiding any amplification process. The results agree well with those obtained by RT-qPCR or reverse transcription quantitative polymerase chain reaction technique.

9.
Talanta ; 240: 123203, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34998140

RESUMEN

This work focuses on the development of an electrochemiluminescent nanostructured DNA biosensor for SARS-CoV-2 detection. Gold nanomaterials (AuNMs), specifically, a mixture of gold nanotriangles (AuNTs) and gold nanoparticles (AuNPs), are used to modified disposable electrodes that serve as an improved nanostructured electrochemiluminescent platform for DNA detection. Carbon nanodots (CDs), prepared by green chemistry, are used as coreactants agents in the [Ru(bpy)3]2+ anodic electrochemiluminescence (ECL) and the hybridization is detected by changes in the ECL signal of [Ru(bpy)3]2+/CDs in combination with AuNMs nanostructures. The biosensor is shown to detect a DNA sequence corresponding to SARS-CoV-2 with a detection limit of 514 aM.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Nanopartículas del Metal , Nanoestructuras , ADN , Técnicas Electroquímicas , Oro , Humanos , Mediciones Luminiscentes , SARS-CoV-2
10.
Mikrochim Acta ; 188(11): 398, 2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34716815

RESUMEN

A simple carbon nanodot-based electrogenerated chemiluminescence biosensor is described for sensitive and selective detection of microRNA-21 (miRNA-21), a biomarker of several pathologies including cardiovascular diseases (CVDs). The photoluminescent carbon nanodots (CNDs) were obtained using a new synthesis method, simply by treating tiger nut milk in a microwave reactor. The synthesis is environmentally friendly, simple, and efficient. The optical properties and morphological characteristics of the CNDs were exhaustively investigated, confirming that they have oxygen and nitrogen functional groups on their surfaces and exhibit excitation-dependent fluorescence emission, as well as photostability. They act as co-reactant agents in the anodic electrochemiluminescence (ECL) of [Ru(bpy)3]2+, producing different signals for the probe (single-stranded DNA) and the hybridized target (double-stranded DNA). These results paved the way for the development of a sensitive ECL biosensor for the detection of miRNA-21. This was developed by immobilization of a thiolated oligonucleotide, fully complementary to the miRNA-21 sequence, on the disposable gold electrode. The target miRNA-21 was hybridized with the probe on the electrode surface, and the hybridization was detected by the enhancement of the [Ru(bpy)3]2+/DNA ECL signal using CNDs. The biosensor shows a linear response to miRNA-21 concentration up to 100.0 pM with a detection limit of 0.721 fM. The method does not require complex labeling steps, and has a rapid response. It was successfully used to detect miRNA-21 directly in serum samples from heart failure patients without previous RNA extraction neither amplification process.


Asunto(s)
Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Sustancias Luminiscentes/química , Mediciones Luminiscentes/métodos , MicroARNs/sangre , Puntos Cuánticos/química , Técnicas Biosensibles/instrumentación , Carbono/química , Complejos de Coordinación/química , Técnicas Electroquímicas/instrumentación , Electrodos , Oro/química , Insuficiencia Cardíaca/sangre , Humanos , Ácidos Nucleicos Inmovilizados/genética , Límite de Detección , Mediciones Luminiscentes/instrumentación , Masculino , MicroARNs/genética , Hibridación de Ácido Nucleico , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/genética , Compuestos de Rutenio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA