Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(6): 107404, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38782204

RESUMEN

Infectious diseases are a significant cause of death, and recent studies estimate that common bacterial infectious diseases were responsible for 13.6% of all global deaths in 2019. Among the most significant bacterial pathogens is Staphylococcus aureus, accounting for more than 1.1 million deaths worldwide in 2019. Vitamin biosynthesis has been proposed as a promising target for antibacterial therapy. Here, we investigated the biochemical, structural, and dynamic properties of the enzyme complex responsible for vitamin B6 (pyridoxal 5-phosphate, PLP) biosynthesis in S. aureus, which comprises enzymes SaPdx1 and SaPdx2. The crystal structure of the 24-mer complex of SaPdx1-SaPdx2 enzymes indicated that the S. aureus PLP synthase complex forms a highly dynamic assembly with transient interaction between the enzymes. Solution scattering data indicated that SaPdx2 typically binds to SaPdx1 at a substoichiometric ratio. We propose a structure-based view of the PLP synthesis mechanism initiated with the assembly of SaPLP synthase complex that proceeds in a highly dynamic interaction between Pdx1 and Pdx2. This interface interaction can be further explored as a potentially druggable site for the design of new antibiotics.


Asunto(s)
Proteínas Bacterianas , Fosfato de Piridoxal , Staphylococcus aureus , Staphylococcus aureus/enzimología , Staphylococcus aureus/metabolismo , Fosfato de Piridoxal/metabolismo , Fosfato de Piridoxal/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Conformación Proteica , Unión Proteica
2.
Front Public Health ; 8: 26, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32257985

RESUMEN

Antibiotic resistance is a worldwide concern that requires a concerted action from physicians, patients, governmental agencies, and academia to prevent infections and the spread of resistance, track resistant bacteria, improve the use of current antibiotics, and develop new antibiotics. Despite the efforts spent so far, the current antibiotics in the market are restricted to only five general targets/pathways highlighting the need for basic research focusing on the discovery and evaluation of new potential targets. Here we interrogate two biosynthetic pathways as potentially druggable pathways in bacteria. The biosynthesis pathway for thiamine (vitamin B1), absent in humans, but found in many bacteria, including organisms in the group of the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter sp.) and the biosynthesis pathway for pyridoxal 5'-phosphate and its vitamers (vitamin B6), found in S. aureus. Using current genomic data, we discuss the possibilities of inhibition of enzymes in the pathway and review the current state of the art in the scientific literature.


Asunto(s)
Pseudomonas aeruginosa , Staphylococcus aureus , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Humanos , Klebsiella pneumoniae
3.
Int J Biol Macromol ; 156: 18-26, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32275991

RESUMEN

The selenocysteine (Sec) incorporation is a co-translational event taking place at an in-frame UGA-codon and dependent on an organized molecular machinery. Selenium delivery requires mainly two enzymes, the selenocysteine lyase (CsdB) is essential for Sec recycling and conversion to selenide, further used by the selenophosphate synthetase (SelD), responsible for the conversion of selenide in selenophosphate. Therefore, understanding the catalytic mechanism involved in selenium compounds delivery, such as the interaction between SelD and CsdB (EcCsdB.EcSelD), is fundamental for the further comprehension of the selenocysteine synthesis pathway and its control. In Escherichia coli, EcCsdB.EcSelD interaction must occur to prevent cell death from the release of the toxic intermediate selenide. Here, we demonstrate and characterize the in vitro EcSelD.EcCsdB interaction by biophysical methods. The EcSelD.EcCsdB interaction occurs with a stoichiometry of 1:1 in presence of selenocysteine and at a low-nanomolar affinity (~1.8 nM). The data is in agreement with the small angle X-ray scattering model fitted using available structures. Moreover, yeast-2-hybrid assays supported the macromolecular interaction in the cellular environment. This is the first report that demonstrates the interaction between EcCsdB and EcSelD supporting the hypothesis that EcSelD.EcCsdB interaction is necessary to sequester the selenide during the selenocysteine incorporation pathway in Bacteria.


Asunto(s)
Liasas/química , Liasas/metabolismo , Fosfotransferasas/química , Fosfotransferasas/metabolismo , Selenocisteína/biosíntesis , Rastreo Diferencial de Calorimetría , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Estabilidad Proteica , Desplegamiento Proteico , Dispersión del Ángulo Pequeño , Selenio/metabolismo , Espectrometría de Fluorescencia , Termodinámica , Técnicas del Sistema de Dos Híbridos , Ultracentrifugación
4.
Extremophiles ; 22(5): 781-793, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30014242

RESUMEN

The biotechnological and industrial uses of thermostable and organic solvent-tolerant enzymes are extensive and the investigation of such enzymes from microbiota present in oil reservoirs is a promising approach. Searching sequence databases for esterases from such microbiota, we have identified in silico a potentially secreted esterase from Acetomicrobium hydrogeniformans, named AhEst. The recombinant enzyme was produced in E. coli to be used in biochemical and biophysical characterization studies. AhEst presented hydrolytic activity on short-acyl-chain p-nitrophenyl ester substrates. AhEst activity was high and stable in temperatures up to 75 °C. Interestingly, high salt concentration induced a significant increase of catalytic activity. AhEst still retained ~ 50% of its activity in 30% concentration of several organic solvents. Synchrotron radiation circular dichroism and fluorescence spectroscopies confirmed that AhEst displays high structural stability in extreme conditions of temperature, salinity, and organic solvents. The enzyme is a good emulsifier agent and is able to partially reverse the wettability of an oil-wet carbonate substrate, making it of potential interest for use in enhanced oil recovery. All the traits observed in AhEst make it an interesting candidate for many industrial applications, such as those in which a significant hydrolytic activity at high temperatures is required.


Asunto(s)
Proteínas Bacterianas/metabolismo , Esterasas/metabolismo , Ambientes Extremos , Desnaturalización Proteica , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Esterasas/química , Esterasas/genética , Calor , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salinidad , Solventes/química , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA