Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxicol Pathol ; 51(4): 160-175, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37632371

RESUMEN

Assessment of hypertensive tubulopathy for more than fifty animal models of hypertension in experimental pathology employs criteria that do not correspond to lesional descriptors for tubular lesions in clinical pathology. We provide a critical appraisal of experimental hypertension with the same approach used to estimate hypertensive renal tubulopathy in humans. Four models with different pathogenesis of hypertension were analyzed-chronic angiotensin (Ang) II-infused and renin-overexpressing (TTRhRen) mice, spontaneously hypertensive (SHR), and Goldblatt two-kidney one-clip (2K1C) rats. Mouse models, SHR, and the nonclipped kidney in 2K1C rats had no regular signs of hypertensive tubulopathy. Histopathology in animals was mild and limited to variations in the volume density of tubular lumen and epithelium, interstitial space, and interstitial collagen. Affected kidneys in animals demonstrated lesion values that are significantly different compared with healthy controls but correspond to mild damage if compared with hypertensive humans. The most substantial human-like hypertensive tubulopathy was detected in the clipped kidney of 2K1C rats. For the first time, our study demonstrated the regular presence of chronic progressive nephropathy (CPN) in relatively young mice and rats with induced hypertension. Because CPN may confound the assessment of rodent models of hypertension, proliferative markers should be used to verify nonhypertensive tubulopathy.


Asunto(s)
Hipertensión , Patología Clínica , Humanos , Ratas , Ratones , Animales , Ratas Endogámicas SHR , Riñón , Modelos Animales de Enfermedad
2.
PLoS One ; 17(2): e0264136, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35176122

RESUMEN

Current research on hypertension utilizes more than fifty animal models that rely mainly on stable increases in systolic blood pressure. In experimental hypertension, grading or scoring of glomerulopathy in the majority of studies is based on a wide range of opinion-based histological changes that do not necessarily comply with lesional descriptors for glomerular injury that are well-established in clinical pathology. Here, we provide a critical appraisal of experimental hypertensive glomerulopathy with the same approach used to assess hypertensive glomerulopathy in humans. Four hypertensive models with varying pathogenesis were analyzed-chronic angiotensin II infused mice, mice expressing active human renin in the liver (TTRhRen), spontaneously hypertensive rats (SHR), and Goldblatt two-kidney one-clip rats (2K1C). Analysis of glomerulopathy utilized the same criteria applied in humans-hyalinosis, focal segmental glomerulosclerosis (FSGS), ischemic, hypertrophic and solidified glomeruli, or global glomerulosclerosis (GGS). Data from animal models were compared to human reference values. Kidneys in TTRhRen mice, SHR and the nonclipped kidneys in 2K1C rats had no sign of hyalinosis, FSGS or GGS. Glomerulopathy in these groups was limited to variations in mesangial and capillary compartment volumes, with mild increases in collagen deposition. Histopathology in angiotensin II infused mice corresponded to mesangioproliferative glomerulonephritis, but not hypertensive glomerulosclerosis. The number of nephrons was significantly reduced in TTRhRen mice and SHR, but did not correlate with severity of glomerulopathy. The most substantial human-like glomerulosclerotic lesions, including FSGS, ischemic obsolescent glomeruli and GGS, were found in the clipped kidneys of 2K1C rats. The comparison of affected kidneys to healthy control in animals produces lesion values that are numerically impressive but correspond to mild damage if compared to humans. Animal studies should be standardized by employing the criteria and classifications established in human pathology to make experimental and human data fully comparable for comprehensive analysis and model improvements.


Asunto(s)
Angiotensina II/toxicidad , Modelos Animales de Enfermedad , Glomeruloesclerosis Focal y Segmentaria/patología , Hipertensión Renal/patología , Hipertensión/complicaciones , Nefritis/patología , Nefroesclerosis/patología , Animales , Glomeruloesclerosis Focal y Segmentaria/etiología , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Humanos , Hipertensión/inducido químicamente , Hipertensión Renal/etiología , Hipertensión Renal/metabolismo , Masculino , Nefritis/etiología , Nefritis/metabolismo , Nefroesclerosis/etiología , Nefroesclerosis/metabolismo , Ratas , Ratas Endogámicas SHR , Vasoconstrictores/toxicidad
3.
PLoS One ; 14(5): e0216734, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31112562

RESUMEN

Remodeling of spatially heterogeneous arterial trees is routinely quantified on tissue sections by averaging linear dimensions, with lack of comparison between different organs and models. The impact of experimental models or hypertension treatment modalities on organ-specific vascular remodeling remains undefined. A wide variety of arterial remodeling types has been demonstrated for hypertensive models, which include differences across organs. The purpose of this study was to reassess methods for measurement of arterial remodeling and to establish a morphometric algorithm for standard and comparable quantification of vascular remodeling in hypertension in different vascular beds. We performed a novel and comprehensive morphometric analysis of terminal arteries in the brain, heart, lung, liver, kidney, spleen, stomach, intestine, skin, skeletal muscle, and adrenal glands of control and Goldblatt hypertensive rats on routinely processed tissue sections. Mean dimensions were highly variable but grouping them into sequential 5 µm intervals permitted creation of reliable linear regression equations and complex profiles. Averaged arterial dimensions demonstrated seven remodeling patterns that were distinct from conventional inward-outward and hypertrophic-eutrophic definitions. Numerical modeling predicted at least nineteen variants of arterial spatial conformations. Recognition of remodeling variants was not possible using averaged dimensions, their ratios, or the remodeling and growth indices. To distinguish remodeling patterns, a three-dimensional modeling was established and tested. The proposed algorithm permits quantitative analysis of arterial remodeling in different organs and may be applicable for comparative studies between animal hypertensive models and human hypertension. Arterial wall tapering is the most important factor to consider in arterial morphometry, while perfusion fixation with vessel relaxation is not necessary. Terminal arteries in organs undergo the same remodeling pattern in Goldblatt rats, except for organs with hemodynamics affected by the arterial clip. The existing remodeling nomenclature should be replaced by a numerical classification applicable to any type of arterial remodeling.


Asunto(s)
Hipertensión Renovascular/patología , Remodelación Vascular , Algoritmos , Animales , Arterias/diagnóstico por imagen , Arterias/patología , Simulación por Computador , Vasos Coronarios/diagnóstico por imagen , Vasos Coronarios/patología , Modelos Animales de Enfermedad , Hemodinámica , Humanos , Hipertensión Renovascular/diagnóstico por imagen , Hipertensión Renovascular/fisiopatología , Imagenología Tridimensional , Masculino , Modelos Anatómicos , Especificidad de Órganos , Arteria Pulmonar/diagnóstico por imagen , Arteria Pulmonar/patología , Ratas , Ratas Wistar , Arteria Renal/diagnóstico por imagen , Arteria Renal/patología , Remodelación Vascular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA