Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Cell Death Dis ; 15(5): 379, 2024 May 30.
Article En | MEDLINE | ID: mdl-38816421

CSMD1 (Cub and Sushi Multiple Domains 1) is a well-recognized regulator of the complement cascade, an important component of the innate immune response. CSMD1 is highly expressed in the central nervous system (CNS) where emergent functions of the complement pathway modulate neural development and synaptic activity. While a genetic risk factor for neuropsychiatric disorders, the role of CSMD1 in neurodevelopmental disorders is unclear. Through international variant sharing, we identified inherited biallelic CSMD1 variants in eight individuals from six families of diverse ancestry who present with global developmental delay, intellectual disability, microcephaly, and polymicrogyria. We modeled CSMD1 loss-of-function (LOF) pathogenesis in early-stage forebrain organoids differentiated from CSMD1 knockout human embryonic stem cells (hESCs). We show that CSMD1 is necessary for neuroepithelial cytoarchitecture and synchronous differentiation. In summary, we identified a critical role for CSMD1 in brain development and biallelic CSMD1 variants as the molecular basis of a previously undefined neurodevelopmental disorder.


Intellectual Disability , Membrane Proteins , Humans , Intellectual Disability/genetics , Intellectual Disability/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Female , Male , Neurodevelopmental Disorders/genetics , Alleles , Malformations of Cortical Development/genetics , Malformations of Cortical Development/pathology , Child , Child, Preschool , Cell Differentiation/genetics , Tumor Suppressor Proteins
2.
HGG Adv ; 4(3): 100198, 2023 07 13.
Article En | MEDLINE | ID: mdl-37181331

GATA zinc finger domain containing 2A (GATAD2A) is a subunit of the nucleosome remodeling and deacetylase (NuRD) complex. NuRD is known to regulate gene expression during neural development and other processes. The NuRD complex modulates chromatin status through histone deacetylation and ATP-dependent chromatin remodeling activities. Several neurodevelopmental disorders (NDDs) have been previously linked to variants in other components of NuRD's chromatin remodeling subcomplex (NuRDopathies). We identified five individuals with features of an NDD that possessed de novo autosomal dominant variants in GATAD2A. Core features in affected individuals include global developmental delay, structural brain defects, and craniofacial dysmorphology. These GATAD2A variants are predicted to affect protein dosage and/or interactions with other NuRD chromatin remodeling subunits. We provide evidence that a GATAD2A missense variant disrupts interactions of GATAD2A with CHD3, CHD4, and CHD5. Our findings expand the list of NuRDopathies and provide evidence that GATAD2A variants are the genetic basis of a previously uncharacterized developmental disorder.


Mi-2 Nucleosome Remodeling and Deacetylase Complex , Neurodevelopmental Disorders , Repressor Proteins , Humans , DNA Helicases/metabolism , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Nerve Tissue Proteins , Neurodevelopmental Disorders/genetics , Nucleosomes , Repressor Proteins/genetics
3.
Hum Genet ; 2023 Apr 22.
Article En | MEDLINE | ID: mdl-37086328

Metazoan development arises from spatiotemporal control of gene expression, which depends on epigenetic regulators like the polycomb group proteins (PcG) that govern the chromatin landscape. PcG proteins facilitate the addition and removal of histone 2A monoubiquitination at lysine 119 (H2AK119ub1), which regulates gene expression, cell fate decisions, cell cycle progression, and DNA damage repair. Regulation of these processes by PcG proteins is necessary for proper development, as pathogenic variants in these genes are increasingly recognized to underly developmental disorders. Overlapping features of developmental syndromes associated with pathogenic variants in specific PcG genes suggest disruption of central developmental mechanisms; however, unique clinical features observed in each syndrome suggest additional non-redundant functions for each PcG gene. In this review, we describe the clinical manifestations of pathogenic PcG gene variants, review what is known about the molecular functions of these gene products during development, and interpret the clinical data to summarize the current evidence toward an understanding of the genetic and molecular mechanism.

...