Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 122024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38294329

RESUMEN

Seedling root traits impact plant establishment under challenging environments. Pearl millet is one of the most heat and drought tolerant cereal crops that provides a vital food source across the sub-Saharan Sahel region. Pearl millet's early root system features a single fast-growing primary root which we hypothesize is an adaptation to the Sahelian climate. Using crop modeling, we demonstrate that early drought stress is an important constraint in agrosystems in the Sahel where pearl millet was domesticated. Furthermore, we show that increased pearl millet primary root growth is correlated with increased early water stress tolerance in field conditions. Genetics including genome-wide association study and quantitative trait loci (QTL) approaches identify genomic regions controlling this key root trait. Combining gene expression data, re-sequencing and re-annotation of one of these genomic regions identified a glutaredoxin-encoding gene PgGRXC9 as the candidate stress resilience root growth regulator. Functional characterization of its closest Arabidopsis homolog AtROXY19 revealed a novel role for this glutaredoxin (GRX) gene clade in regulating cell elongation. In summary, our study suggests a conserved function for GRX genes in conferring root cell elongation and enhancing resilience of pearl millet to its Sahelian environment.


Pearl millet is a staple food for over 90 million people living in regions of Africa and India that typically experience high temperatures and little rainfall. It was domesticated about 4,500 years ago in the Sahel region of West Africa and is one of the most heat and drought tolerant cereal crops worldwide. In most plants, organs known as roots absorb water and essential nutrients from the soil. Young pearl millet plants develop a fast-growing primary root, but it is unclear how this unique feature helps the crop to grow in hot and dry conditions. Using weather data collected from the Sahel over a 20-year period, Fuente, Grondin et al. predicted by modelling that early drought stress is the major factor limiting pearl millet growth and yield in this region. Field experiments found that plants with primary roots that grow faster within soil were better at tolerating early drought than those with slower growing roots. Further work using genetic approaches revealed that a gene known as PgGRXC9 promotes the growth of the primary root. To better understand how this gene works, the team examined a very similar gene in a well-studied model plant known as Arabidopsis. This suggested that PgGRXC9 helps the primary root to grow by stimulating cell elongation within the root. Since it is well adapted to dry conditions, pearl millet is expected to play an important role in helping agriculture adjust to climate change. The findings of Fuente, Grondin et al. may be used by plant breeders to create more resilient and productive varieties of pearl millet.


Asunto(s)
Arabidopsis , Pennisetum , Sequías , Pennisetum/genética , Glutarredoxinas , Estudio de Asociación del Genoma Completo , Productos Agrícolas
2.
PLoS One ; 18(9): e0291385, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37682975

RESUMEN

COI1-mediated perception of jasmonate is critical for plant development and responses to environmental stresses. Monocots such as rice have two groups of COI genes due to gene duplication: OsCOI1a and OsCOI1b that are functionally equivalent to the dicotyledons COI1 and OsCOI2 whose function remains unclear. In order to assess the function of OsCOI2 and its functional redundancy with COI1 genes, we developed a series of rice mutants in the 3 genes OsCOI1a, OsCOI1b and OsCOI2 by CRISPR Cas9-mediated editing and characterized their phenotype and responses to jasmonate. Characterization of OsCOI2 uncovered its important roles in root, leaf and flower development. In particular, we show that crown root growth inhibition by jasmonate relies on OsCOI2 and not on OsCOI1a nor on OsCOI1b, revealing a major function for the non-canonical OsCOI2 in jasmonate-dependent control of rice root growth. Collectively, these results point to a specialized function of OsCOI2 in the regulation of plant development in rice and indicate that sub-functionalisation of jasmonate receptors has occurred in the monocot phylum.


Asunto(s)
Oryza , Oryza/genética , Ciclopentanos , Duplicación de Gen , Inhibición Psicológica
3.
Plant J ; 111(2): 546-566, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35596715

RESUMEN

In cereals, the root system is mainly composed of post-embryonic shoot-borne roots, named crown roots. The CROWN ROOTLESS1 (CRL1) transcription factor, belonging to the ASYMMETRIC LEAVES2-LIKE/LATERAL ORGAN BOUNDARIES DOMAIN (ASL/LBD) family, is a key regulator of crown root initiation in rice (Oryza sativa). Here, we show that CRL1 can bind, both in vitro and in vivo, not only the LBD-box, a DNA sequence recognized by several ASL/LBD transcription factors, but also another not previously identified DNA motif that was named CRL1-box. Using rice protoplast transient transactivation assays and a set of previously identified CRL1-regulated genes, we confirm that CRL1 transactivates these genes if they possess at least a CRL1-box or an LBD-box in their promoters. In planta, ChIP-qPCR experiments targeting two of these genes that include both a CRL1- and an LBD-box in their promoter show that CRL1 binds preferentially to the LBD-box in these promoter contexts. CRISPR/Cas9-targeted mutation of these two CRL1-regulated genes, which encode a plant Rho GTPase (OsROP) and a basic helix-loop-helix transcription factor (OsbHLH044), show that both promote crown root development. Finally, we show that OsbHLH044 represses a regulatory module, uncovering how CRL1 regulates specific processes during crown root formation.


Asunto(s)
Oryza , ADN/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
J Exp Bot ; 73(11): 3496-3510, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35224628

RESUMEN

Lateral root organogenesis is a key process in the development of a plant's root system and its adaptation to the environment. During lateral root formation, an early phase of cell proliferation first produces a four-cell-layered primordium, and only from this stage onwards is a root meristem-like structure, expressing root stem cell niche marker genes, being established in the developing organ. Previous studies reported that the gene regulatory network controlling lateral root formation is organized into two subnetworks whose mutual inhibition may contribute to organ patterning. PUCHI encodes an AP2/ERF transcription factor expressed early during lateral root primordium development and required for correct lateral root formation. To dissect the molecular events occurring during this early phase, we generated time-series transcriptomic datasets profiling lateral root development in puchi-1 mutants and wild types. Transcriptomic and reporter analyses revealed that meristem-related genes were expressed ectopically at early stages of lateral root formation in puchi-1 mutants. We conclude that, consistent with the inhibition of genetic modules contributing to lateral root development, PUCHI represses ectopic establishment of meristematic cell identities at early stages of organ development. These findings shed light on gene network properties that orchestrate correct timing and patterning during lateral root formation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Meristema , Raíces de Plantas , Factores de Transcripción/metabolismo
5.
Methods Mol Biol ; 2395: 79-95, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34822150

RESUMEN

Postembryonic organogenesis is a critical component in plant root and shoot development and its adaptation to the environment. Decades of scientific analyses have yielded a wealth of experimental data about the cellular and molecular processes orchestrating the postembryonic formation of new shoot and root organs. Among these, distribution and signaling of the plant hormone auxin play a prominent role. Systems biology approaches are now particularly interesting to study the emerging properties of such complex and dynamic regulatory networks. To fully explore the precise kinetics of these organogenesis processes, efficient protocols for the synchronized induction of shoot and root organogenesis are extremely valuable. Two protocols for shoot and root organ induction are detailed.


Asunto(s)
Fenómenos Fisiológicos de las Plantas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Meristema/metabolismo , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas , Brotes de la Planta/metabolismo , Plantas , Transducción de Señal
7.
Trends Plant Sci ; 24(9): 826-839, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31362861

RESUMEN

Lateral roots (LRs) are crucial for increasing the surface area of root systems to explore heterogeneous soil environments. Major advances have recently been made in the model plant arabidopsis (Arabidopsis thaliana) to elucidate the cellular basis of LR development and the underlying gene regulatory networks (GRNs) that control the morphogenesis of the new root organ. This has provided a foundation for understanding the sophisticated adaptive mechanisms that regulate how plants pattern their root branching to match the spatial availability of resources such as water and nutrients in their external environment. We review new insights into the molecular, cellular, and environmental regulation of LR development in arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Ácidos Indolacéticos , Raíces de Plantas
8.
Plant J ; 100(5): 954-968, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31369175

RESUMEN

Crown roots (CRs) are essential components of the rice root system. Several genes involved in CR initiation or development have been identified but our knowledge about how they organize to form a gene regulatory network (GRN) is still limited. To characterize the regulatory cascades acting during CR formation, we used a systems biology approach to infer the GRN controlling CR formation downstream of CROWN ROOTLESS 1 (CRL1), coding for an ASL (asymmetric leaves-2-like)/LBD (LOB domain) transcription factor necessary for CR initiation. A time-series transcriptomic dataset was generated after synchronized induction of CR formation by dexamethasone-mediated expression of CRL1 expression in a crl1 mutant background. This time series revealed three different genome expression phases during the early steps of CR formation and was further exploited to infer a GRN using a dedicated algorithm. The predicted GRN was confronted with experimental data and 72% of the inferred links were validated. Interestingly, this network revealed a regulatory cascade linking CRL1 to other genes involved in CR initiation, root meristem specification and maintenance, such as QUIESCENT-CENTER-SPECIFIC HOMEOBOX, and in auxin signalling. This predicted regulatory cascade was validated in vivo using transient activation assays. Thus, the CRL1-dependant GRN reflects major gene regulation events at play during CR formation and constitutes a valuable source of discovery to better understand this developmental process.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Oryza/metabolismo , Raíces de Plantas/genética , Factores de Transcripción/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ontología de Genes , Redes Reguladoras de Genes/efectos de los fármacos , Genes Homeobox , Meristema/genética , Oryza/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Dominios Proteicos/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción/genética , Transcriptoma
9.
Proc Natl Acad Sci U S A ; 116(28): 14325-14330, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31235573

RESUMEN

Lateral root organogenesis plays an essential role in elaborating plant root system architecture. In Arabidopsis, the AP2 family transcription factor PUCHI controls cell proliferation in lateral root primordia. To identify potential targets of PUCHI, we analyzed a time course transcriptomic dataset of lateral root formation. We report that multiple genes coding for very long chain fatty acid (VLCFA) biosynthesis enzymes are induced during lateral root development in a PUCHI-dependent manner. Significantly, several mutants perturbed in VLCFA biosynthesis show similar lateral root developmental defects as puchi-1 Moreover, puchi-1 roots display the same disorganized callus formation phenotype as VLCFA biosynthesis-deficient mutants when grown on auxin-rich callus-inducing medium. Lipidomic profiling of puchi-1 roots revealed reduced VLCFA content compared with WT. We conclude that PUCHI-regulated VLCFA biosynthesis is part of a pathway controlling cell proliferation during lateral root and callus formation.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Callo Óseo/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Factores de Transcripción/genética , Arabidopsis/crecimiento & desarrollo , Callo Óseo/metabolismo , Proliferación Celular/genética , Ácidos Grasos/biosíntesis , Ácidos Grasos/genética , Ácidos Indolacéticos/metabolismo , Desarrollo de la Planta/genética , Raíces de Plantas/genética
10.
Trends Plant Sci ; 23(8): 706-720, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29764727

RESUMEN

Genetics and molecular biology have contributed to the development of rationalized plant breeding programs. Recent developments in both high-throughput experimental analyses of biological systems and in silico data processing offer the possibility to address the whole gene regulatory network (GRN) controlling a given trait. GRN models can be applied to identify topological features helping to shortlist potential candidate genes for breeding purposes. Time-series data sets can be used to support dynamic modelling of the network. This will enable a deeper comprehension of network behaviour and the identification of the few elements to be genetically rewired to push the system towards a modified phenotype of interest. This paves the way to design more efficient, systems biology-based breeding strategies.


Asunto(s)
Redes Reguladoras de Genes , Plantas/genética , Biología de Sistemas , Domesticación , Mutación , Fenotipo , Fitomejoramiento
11.
Plant Physiol ; 177(3): 896-910, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29752308

RESUMEN

Recent progress in root phenotyping has focused mainly on increasing throughput for genetic studies, while identifying root developmental patterns has been comparatively underexplored. We introduce a new phenotyping pipeline for producing high-quality spatiotemporal root system development data and identifying developmental patterns within these data. The SmartRoot image-analysis system and temporal and spatial statistical models were applied to two cereals, pearl millet (Pennisetum glaucum) and maize (Zea mays). Semi-Markov switching linear models were used to cluster lateral roots based on their growth rate profiles. These models revealed three types of lateral roots with similar characteristics in both species. The first type corresponds to fast and accelerating roots, the second to rapidly arrested roots, and the third to an intermediate type where roots cease elongation after a few days. These types of lateral roots were retrieved in different proportions in a maize mutant affected in auxin signaling, while the first most vigorous type was absent in maize plants exposed to severe shading. Moreover, the classification of growth rate profiles was mirrored by a ranking of anatomical traits in pearl millet. Potential dependencies in the succession of lateral root types along the primary root were then analyzed using variable-order Markov chains. The lateral root type was not influenced by the shootward neighbor root type or by the distance from this root. This random branching pattern of primary roots was remarkably conserved, despite the high variability of root systems in both species. Our phenotyping pipeline opens the door to exploring the genetic variability of lateral root developmental patterns.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Pennisetum/crecimiento & desarrollo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Cadenas de Markov , Modelos Biológicos , Modelos Estadísticos , Pennisetum/anatomía & histología , Raíces de Plantas/fisiología , Zea mays/genética
12.
Development ; 143(18): 3363-71, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27510971

RESUMEN

Lateral root formation is an important determinant of root system architecture. In Arabidopsis, lateral roots originate from pericycle cells, which undergo a program of morphogenesis to generate a new lateral root meristem. Despite its importance for root meristem organization, the onset of quiescent center (QC) formation during lateral root morphogenesis remains unclear. Here, we used live 3D confocal imaging to monitor cell organization and identity acquisition during lateral root development. Our dynamic observations revealed an early morphogenesis phase and a late meristem formation phase as proposed in the bi-phasic growth model. Establishment of lateral root QCs coincided with this developmental phase transition. QC precursor cells originated from the outer layer of stage II lateral root primordia, within which the SCARECROW (SCR) transcription factor was specifically expressed. Disrupting SCR function abolished periclinal divisions in this lateral root primordia cell layer and perturbed the formation of QC precursor cells. We conclude that de novo QC establishment in lateral root primordia operates via SCR-mediated formative cell division and coincides with the developmental phase transition.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Raíces de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Meristema/genética , Meristema/metabolismo , Raíces de Plantas/genética
13.
Front Plant Sci ; 7: 829, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27379124

RESUMEN

Pearl millet plays an important role for food security in arid regions of Africa and India. Nevertheless, it is considered an orphan crop as it lags far behind other cereals in terms of genetic improvement efforts. Breeding pearl millet varieties with improved root traits promises to deliver benefits in water and nutrient acquisition. Here, we characterize early pearl millet root system development using several different root phenotyping approaches that include rhizotrons and microCT. We report that early stage pearl millet root system development is characterized by a fast growing primary root that quickly colonizes deeper soil horizons. We also describe root anatomical studies that revealed three distinct types of lateral roots that form on both primary roots and crown roots. Finally, we detected significant variation for two root architectural traits, primary root lenght and lateral root density, in pearl millet inbred lines. This study provides the basis for subsequent genetic experiments to identify loci associated with interesting early root development traits in this important cereal.

15.
Trends Plant Sci ; 21(3): 175-177, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26809639

RESUMEN

Regulation of auxin distribution by PIN transporters is key in the dynamic modulation of root growth and branching. Three novel papers shed light on an intricate network through which several hormones and transcriptional regulators collectively fine-tune the transcriptional level of these auxin transporters in the root.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Membrana/genética , Proteínas de Plantas/genética , Raíces de Plantas/anatomía & histología , Raíces de Plantas/genética , Transcripción Genética , Gravitropismo/genética , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Plantas/metabolismo
16.
Plant Cell ; 27(5): 1368-88, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25944102

RESUMEN

A large number of genes involved in lateral root (LR) organogenesis have been identified over the last decade using forward and reverse genetic approaches in Arabidopsis thaliana. Nevertheless, how these genes interact to form a LR regulatory network largely remains to be elucidated. In this study, we developed a time-delay correlation algorithm (TDCor) to infer the gene regulatory network (GRN) controlling LR primordium initiation and patterning in Arabidopsis from a time-series transcriptomic data set. The predicted network topology links the very early-activated genes involved in LR initiation to later expressed cell identity markers through a multistep genetic cascade exhibiting both positive and negative feedback loops. The predictions were tested for the key transcriptional regulator AUXIN RESPONSE FACTOR7 node, and over 70% of its targets were validated experimentally. Intriguingly, the predicted GRN revealed a mutual inhibition between the ARF7 and ARF5 modules that would control an early bifurcation between two cell fates. Analyses of the expression pattern of ARF7 and ARF5 targets suggest that this patterning mechanism controls flanking and central zone specification in Arabidopsis LR primordia.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Unión al ADN/genética , Redes Reguladoras de Genes/genética , Raíces de Plantas/genética , Factores de Transcripción/genética , Transcriptoma , Algoritmos , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Diferenciación Celular/genética , Regulación de la Expresión Génica de las Plantas , Mutación , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Factores de Tiempo
17.
Nat Commun ; 6: 6043, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25592181

RESUMEN

Activated forms of jasmonic acid (JA) are central signals coordinating plant responses to stresses, yet tools to analyse their spatial and temporal distribution are lacking. Here we describe a JA perception biosensor termed Jas9-VENUS that allows the quantification of dynamic changes in JA distribution in response to stress with high spatiotemporal sensitivity. We show that Jas9-VENUS abundance is dependent on bioactive JA isoforms, the COI1 co-receptor, a functional Jas motif and proteasome activity. We demonstrate the utility of Jas9-VENUS to analyse responses to JA in planta at a cellular scale, both quantitatively and dynamically. This included using Jas9-VENUS to determine the cotyledon-to-root JA signal velocities on wounding, revealing two distinct phases of JA activity in the root. Our results demonstrate the value of developing quantitative sensors such as Jas9-VENUS to provide high-resolution spatiotemporal data about hormone distribution in response to plant abiotic and biotic stresses.


Asunto(s)
Técnicas Biosensibles/métodos , Ciclopentanos/análisis , Ciclopentanos/metabolismo , Oxilipinas/análisis , Oxilipinas/metabolismo , Plantas/metabolismo , Cotiledón/metabolismo , Raíces de Plantas/metabolismo
18.
Trends Plant Sci ; 18(8): 450-8, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23701908

RESUMEN

The developmental plasticity of the root system represents a key adaptive trait enabling plants to cope with abiotic stresses such as drought and is therefore important in the current context of global changes. Root branching through lateral root formation is an important component of the adaptability of the root system to its environment. Our understanding of the mechanisms controlling lateral root development has progressed tremendously in recent years through research in the model plant Arabidopsis thaliana (Arabidopsis). These studies have revealed that the phytohormone auxin acts as a common integrator to many endogenous and environmental signals regulating lateral root formation. Here, we review what has been learnt about the myriad roles of auxin during lateral root formation in Arabidopsis.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo , Transducción de Señal
19.
Proc Natl Acad Sci U S A ; 110(13): 5229-34, 2013 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-23479644

RESUMEN

In Arabidopsis, lateral root primordia (LRPs) originate from pericycle cells located deep within the parental root and have to emerge through endodermal, cortical, and epidermal tissues. These overlaying tissues place biomechanical constraints on the LRPs that are likely to impact their morphogenesis. This study probes the interplay between the patterns of cell division, organ shape, and overlaying tissues on LRP morphogenesis by exploiting recent advances in live plant cell imaging and image analysis. Our 3D/4D image analysis revealed that early stage LRPs exhibit tangential divisions that create a ring of cells corralling a population of rapidly dividing cells at its center. The patterns of division in the latter population of cells during LRP morphogenesis are not stereotypical. In contrast, statistical analysis demonstrated that the shape of new LRPs is highly conserved. We tested the relative importance of cell division pattern versus overlaying tissues on LRP morphogenesis using mutant and transgenic approaches. The double mutant aurora1 (aur1) aur2 disrupts the pattern of LRP cell divisions and impacts its growth dynamics, yet the new organ's dome shape remains normal. In contrast, manipulating the properties of overlaying tissues disrupted LRP morphogenesis. We conclude that the interaction with overlaying tissues, rather than the precise pattern of divisions, is most important for LRP morphogenesis and optimizes the process of lateral root emergence.


Asunto(s)
Arabidopsis/metabolismo , División Celular/fisiología , Desarrollo de la Planta/fisiología , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Aurora Quinasas , Raíces de Plantas/citología , Raíces de Plantas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
20.
Methods Mol Biol ; 959: 45-67, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23299667

RESUMEN

Organogenesis is the developmental process for producing new organs from undifferentiated cells. In plants, most organs are formed during postembryonic development. Shoot lateral organs are generated in the shoot apical meristem whereas lateral roots develop outside the root apical meristem. While lateral organ formation at the shoot and root might seem quite different, recent genetic studies have highlighted numerous parallels between these processes. In particular, the dynamic accumulation of auxin has been shown to play a crucial role both as a "morphogenetic trigger" and as a morphogen in both phenomena. This suggests that a unique model system could be adopted to study organogenesis in plants. In this chapter we describe the conceptual and technical advantages that support lateral root development as a good model system for studying organogenesis in plants.


Asunto(s)
Organogénesis/fisiología , Raíces de Plantas/fisiología , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...