Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 806(Pt 3): 151355, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34740648

RESUMEN

Mountain areas in Poland are among the most frequented tourist destinations and such intensive tourism negatively affects the natural environment. The COVID-19 pandemic and the resulting lockdown restricted travel for a few months in 2020, providing a unique opportunity to observe the studied mountain environment without the impact of typical tourist traffic. This study is based on the determination of antibiotic content, hydrochemical parameters, enumeration of culturable bacterial water quality indicators, antimicrobial susceptibility tests together with extended spectrum beta-lactamase (ESBL) gene detection in waterborne E. coli and NGS-based bacterial community composition at six sites along the Bialka river valley (one of the most popular touristic regions in Poland) in three periods: in summer and winter tourist seasons and during the COVID-19 lockdown. The results of individual measurements showed decreased numbers of bacterial indicators of water contamination (e.g. numbers of E. coli dropped from 99 × 104 CFU/100 ml to 12 CFU/100 ml at the most contaminated site) and the share of antimicrobial resistant E. coli (total resistance dropped from 21% in summer to 9% during lockdown, share of multidrug resistant strains from 100 to 44%, and ESBL from 20% in summer to none during lockdown). Antibiotic concentrations were the highest during lockdown. The use of multivariate analysis (principal component analysis - PCA and heatmaps) revealed a clear pattern of tourism-related anthropogenic pressure on the water environment and positive impact of COVID-19 lockdown on water quality. PCA distinguished three major factors determining water quality: F1 shows strong effect of anthropogenic pressure; F2 describes the lockdown-related quality restoration processes; F3 is semi-natural and describes the differences between the most pristine and most anthropogenically-impacted waters.


Asunto(s)
COVID-19 , Control de Enfermedades Transmisibles , Monitoreo del Ambiente , Escherichia coli , Humanos , Pandemias , SARS-CoV-2 , Turismo
2.
Microb Biotechnol ; 15(3): 996-1006, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34499405

RESUMEN

The modelling and optimization of a process for the production of the medium chain length polyhydroxyalkanoate (mcl-PHA) by the bacterium Pseudomonas putida KT2440 when fed a synthetic fatty acid mixture (SFAM) was investigated. Four novel feeding strategies were developed and tested using a constructed model and the optimum one implemented in further experiments. This strategy yielded a cell dry weight of 70.6 g l-1 in 25 h containing 38% PHA using SFAM at 5 l scale. A phosphate starvation strategy was implemented to improve PHA content, and this yielded 94.1 g l-1 in 25 h containing 56% PHA using SFAM at 5 l scale. The process was successfully operated at 20 l resulting in a cell dry weight of 91.2 g l-1 containing 65% PHA at the end of a 25-h incubation.


Asunto(s)
Polihidroxialcanoatos , Pseudomonas putida , Medios de Cultivo , Ácidos Grasos , Pseudomonas putida/genética
3.
Waste Manag ; 135: 60-69, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34478949

RESUMEN

In this study, the optimisation of a process for producing medium-chain-length polyhydroxyalkanoate (mcl-PHA) by Pseudomonas putida KT2440 when fed with a polyethene (PE)-derived fatty acid mixture was investigated. The PE was pyrolysed to produce a hydrocarbon wax that was subsequently oxidised to produce a mixture of fatty acids, purified, and used as a PHA substrate for the growth and selection of microorganisms. Based on the shaken flask screening, a production strain, i.e., Pseudomonas putida KT2440, was selected for conducting bioreactor studies. Feeding PE-derived fatty acids in a 20-L setup resulted in high mcl-PHA yields (83.0 g L-1 CDW with 65% PHA in 25 h). Furthermore, life-cycle assessment (LCA) was conducted to determine the environmental advantages of the proposed process and its impacts compared to those of other technologies for treating PE-derived waste streams. We conclude that processing waste PE into PHA, rather than incineration, produces biodegradable material while also reducing the additional emissions that arise from traditional PE waste treatment processes, such as incineration to gain energy.


Asunto(s)
Plásticos Biodegradables , Polihidroxialcanoatos , Pseudomonas putida , Biotecnología , Polietileno
4.
Appl Microbiol Biotechnol ; 105(20): 7555-7566, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34536102

RESUMEN

Research into polyhydroxyalkanoates (PHAs) is growing exponentially. These bacterially derived polyesters offer a spectrum of possible applications, such as in manufacturing of daily-use objects, production of medical devices and implantable objects, or as synthons in chemical and pharmaceutical industries. Thanks to their broad physicochemical features, PHAs can be seen as polymers of the future, which can replace traditional petrochemical equivalents. As they are synthesized by bacteria through fermentation processes, these polyesters can be obtained from virtually any carbon source in a sustainable manner. Characterized by biodegradability and biocompatibility, they are used in many industries, ranging from production of everyday objects to medical applications. Furthermore, as they are built from bioactive monomers, namely (R)-3-hydroxyacids, they provide a platform for the synthesis of advanced chemical compounds. In this mini review, the reader will be acquainted with recent studies conducted at the Jerzy Haber Institute of Catalysis and Surface Chemistry of the Polish Academy of Sciences in collaboration with other groups that have contributed to the development of PHA-based medical materials, bioactive molecules and novel green solvents derived from PHA monomers.Key points• Polyhydroxyalkanoates are emerging polymers for biomedical applications• Polyhydroxyalkanoates can be modified easily to provide novel materials• (R)-3-Hydroxyacids are good synthons for bioactive substances and green solvents.


Asunto(s)
Polihidroxialcanoatos , Bacterias , Fermentación , Poliésteres , Prótesis e Implantes
5.
Biotechnol Bioeng ; 112(4): 725-33, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25311981

RESUMEN

High Cell Density (HCD) cultivation of bacteria is essential for the majority of industrial processes to achieve high volumetric productivity (g L(-1) h(-1) ) of a bioproduct of interest. This study developed a fed batch bioprocess using glucose as sole carbon and energy source for the HCD of the well described biocatalyst Pseudomonas putida KT2440 without the supply of oxygen enriched air. Growth kinetics data from batch fermentations were used for building a bioprocess model and designing feeding strategies. An exponential followed by linearly increasing feeding strategy of glucose was found to be effective in maintaining biomass productivity while also delaying the onset of dissolved oxygen (supplied via compressed air) limitation. A final cell dry weight (CDW) of 102 g L(-1) was achieved in 33 h with a biomass productivity of 3.1 g L(-1) h(-1) which are the highest ever reported values for P. putida strains using glucose without the supply of pure oxygen or oxygen enriched air. The usefulness of the biomass as a biocatalyst was demonstrated through the production of the biodegradable polymer polyhydroxyalkanoate (PHA). When nonanoic acid (NA) was supplied to the glucose grown cells of P. putida KT2440, it accumulated 32% of CDW as PHA in 11 h (2.85 g L(-1) h(-1) ) resulting in a total of 0.56 kg of PHA in 18 L with a yield of 0.56 g PHA g NA(-1) .


Asunto(s)
Glucosa/metabolismo , Pseudomonas putida/crecimiento & desarrollo , Pseudomonas putida/metabolismo , Técnicas de Cultivo Celular por Lotes , Biomasa , Carbono/metabolismo , Metabolismo Energético , Ácidos Grasos/metabolismo , Oxígeno/metabolismo , Polihidroxialcanoatos/metabolismo
6.
Appl Microbiol Biotechnol ; 98(22): 9217-28, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25104034

RESUMEN

A mathematically based fed-batch bioprocess demonstrated the suitability of using a relatively cheap and renewable substrate (butyric acid) for Pseudomonas putida CA-3 high cell density cultivation. Butyric acid fine-tuned addition is critical to extend the fermentation run and avoid oxygen consumption while maximising the biomass volumetric productivity. A conservative submaximal growth rate (µ of 0.25 h(-1)) achieved 71.3 g L(-1) of biomass after 42 h of fed-batch growth. When a more ambitious feed rate was supplied in order to match a µ of 0.35 h(-1), the volumetric productivity was increased to 2.0 g L(-1) h(-1), corresponding to a run of 25 h and 50 g L(-1) of biomass. Both results represent the highest biomass and the best biomass volumetric productivity with butyrate as a sole carbon source. However, medium chain length polyhydroxyalkanoate (mcl-PHA) accumulation with butyrate grown cells is low (4 %). To achieve a higher mcl-PHA volumetric productivity, decanoate was supplied to butyrate grown cells. This strategy resulted in a PHA volumetric productivity of 4.57 g L(-1) h(-1) in the PHA production phase and 1.63 g L(-1) h(-1)over the lifetime of the fermentation, with a maximum mcl-PHA accumulation of 65 % of the cell dry weight.


Asunto(s)
Butiratos/metabolismo , Enzimas , Pseudomonas putida/enzimología , Pseudomonas putida/crecimiento & desarrollo , Técnicas de Cultivo Celular por Lotes , Biomasa , Biotransformación , Carbono/metabolismo , Decanoatos/metabolismo , Modelos Teóricos , Polihidroxialcanoatos/metabolismo
7.
Microbiology (Reading) ; 160(Pt 8): 1760-1771, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24794972

RESUMEN

Diverse and elaborate pathways for nutrient utilization, as well as mechanisms to combat unfavourable nutrient conditions make Pseudomonas putida KT2440 a versatile micro-organism able to occupy a range of ecological niches. The fatty acid degradation pathway of P. putida is complex and correlated with biopolymer medium chain length polyhydroxyalkanoate (mcl-PHA) biosynthesis. Little is known about the second step of fatty acid degradation (ß-oxidation) in this strain. In silico analysis of its genome sequence revealed 21 putative acyl-CoA dehydrogenases (ACADs), four of which were functionally characterized through mutagenesis studies. Four mutants with insertionally inactivated ACADs (PP_1893, PP_2039, PP_2048 and PP_2437) grew and accumulated mcl-PHA on a range of fatty acids as the sole source of carbon and energy. Their ability to grow and accumulate biopolymer was differentially negatively affected on various fatty acids, in comparison to the wild-type strain. Inactive PP_2437 exhibited a pattern of reduced growth and PHA accumulation when fatty acids with lengths of 10 to 14 carbon chains were used as substrates. Recombinant expression and biochemical characterization of the purified protein allowed functional annotation in P. putida KT2440 as an ACAD showing clear preference for dodecanoyl-CoA ester as a substrate and optimum activity at 30 °C and pH 6.5-7.


Asunto(s)
Acil-CoA Deshidrogenasa/química , Acil-CoA Deshidrogenasa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Pseudomonas putida/enzimología , Acil-CoA Deshidrogenasa/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Datos de Secuencia Molecular , Pseudomonas putida/química , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Alineación de Secuencia , Especificidad por Sustrato
8.
Appl Microbiol Biotechnol ; 98(9): 4223-32, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24413975

RESUMEN

A process for the conversion of post consumer (agricultural) polyethylene (PE) waste to the biodegradable polymer medium chain length polyhydroxyalkanoate (mcl-PHA) is reported here. The thermal treatment of PE in the absence of air (pyrolysis) generated a complex mixture of low molecular weight paraffins with carbon chain lengths from C8 to C32 (PE pyrolysis wax). Several bacterial strains were able to grow and produce PHA from this PE pyrolysis wax. The addition of biosurfactant (rhamnolipids) allowed for greater bacterial growth and PHA accumulation of the tested strains. Some strains were only capable of growth and PHA accumulation in the presence of the biosurfactant. Pseudomonas aeruginosa PAO-1 accumulated the highest level of PHA with almost 25 % of the cell dry weight as PHA when supplied with the PE pyrolysis wax in the presence of rhamnolipids. The change of nitrogen source from ammonium chloride to ammonium nitrate resulted in faster bacterial growth and the earlier onset of PHA accumulation. To our knowledge, this is the first report where PE is used as a starting material for production of a biodegradable polymer.


Asunto(s)
Plásticos Biodegradables/metabolismo , Polietileno/química , Polietileno/efectos de la radiación , Polihidroxialcanoatos/metabolismo , Cloruro de Amonio/metabolismo , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Plásticos Biodegradables/química , Calor , Nitratos/metabolismo , Polietileno/metabolismo , Polihidroxialcanoatos/química
9.
Appl Microbiol Biotechnol ; 98(2): 611-20, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24162086

RESUMEN

A two step biological process for the conversion of grass biomass to the biodegradable polymer medium chain length polyhydroxyalkanoate (mcl-PHA) was achieved through the use of anaerobic and aerobic microbial processes. Anaerobic digestion (mixed culture) of ensiled grass was achieved with a recirculated leach bed bioreactor resulting in the production of a leachate, containing 15.3 g/l of volatile fatty acids (VFAs) ranging from acetic to valeric acid with butyric acid predominating (12.8 g/l). The VFA mixture was concentrated to 732.5 g/l with a 93.3 % yield of butyric acid (643.9 g/l). Three individual Pseudomonas putida strains, KT2440, CA-3 and GO16 (single pure cultures), differed in their ability to grow and accumulate PHA from VFAs. P. putida CA-3 achieved the highest biomass and PHA on average with individual fatty acids, exhibited the greatest tolerance to higher concentrations of butyric acid (up to 40 mM) compared to the other strains and exhibited a maximum growth rate (µMAX = 0.45 h⁻¹). Based on these observations P. putida CA-3 was chosen as the test strain with the concentrated VFA mixture derived from the AD leachate. P. putida CA-3 achieved 1.56 g of biomass/l and accumulated 39 % of the cell dry weight as PHA (nitrogen limitation) in shake flasks. The PHA was composed predominantly of 3-hydroxydecanoic acid (>65 mol%).


Asunto(s)
Reactores Biológicos , Ácidos Grasos Volátiles/metabolismo , Poaceae/metabolismo , Polihidroxialcanoatos/metabolismo , Pseudomonas putida/metabolismo
10.
Environ Microbiol Rep ; 5(5): 740-6, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24115625

RESUMEN

The primary enzyme involved in polyphosphate (polyP) synthesis, polyP kinase (ppk), has been deleted in Pseudomonas putida KT2440. This has resulted in a threefold to sixfold reduction in polyhydroxyalkanoate (PHA) accumulation compared with the wild type under conditions of nitrogen limitation, with either temperature or oxidative (H2O2) stress, when grown on glucose. The accumulation of PHA by Δppk mutant was the same as the wild type under nitrogen-limiting growth conditions. There was no difference in polyP levels between wild-type and Δppk strains under all growth conditions tested. In the Δppk mutant proteome, polyP kinase (PPK) was undetectable, but up-regulation of the polyp-associated proteins polyP adenosine triphosphate (ATP)/nicotinamide adenine dinucleotide (NAD) kinase (PpnK), a putative polyP adenosine monophosphate (AMP) phosphotransferase (PP_1752), and exopolyphosphatase was observed. Δppk strain exhibited significantly retarded growth with glycerol as carbon and energy source (42 h of lag period compared with 24 h in wild-type strain) but similar growth to the wild-type strain with glucose. Analysis of gene transcription revealed downregulation of glycerol kinase and the glycerol facilitator respectively. Glycerol kinase protein expression was also downregulated in the Δppk mutant. The deletion of ppk did not affect motility but reduced biofilm formation. Thus, the knockout of the ppk gene has resulted in a number of phenotypic changes to the mutant without affecting polyP accumulation.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbono/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Polihidroxialcanoatos/metabolismo , Pseudomonas putida/enzimología , Eliminación de Gen , Glucosa/metabolismo , Glicerol/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/crecimiento & desarrollo , Pseudomonas putida/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...