Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Nucl Med ; 65(4): 635-642, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38453361

RESUMEN

The normalized distances from the hot spot of radiotracer uptake (SUVmax) to the tumor centroid (NHOC) and to the tumor perimeter (NHOP) have recently been suggested as novel PET features reflecting tumor aggressiveness. These biomarkers characterizing the shift of SUVmax toward the lesion edge during tumor progression have been shown to be prognostic factors in breast and non-small cell lung cancer (NSCLC) patients. We assessed the impact of imaging parameters on NHOC and NHOP, their complementarity to conventional PET features, and their prognostic value for advanced-NSCLC patients. Methods: This retrospective study investigated baseline [18F]FDG PET scans: cohort 1 included 99 NSCLC patients with no treatment-related inclusion criteria (robustness study); cohort 2 included 244 NSCLC patients (survival analysis) treated with targeted therapy (93), immunotherapy (63), or immunochemotherapy (88). Although 98% of patients had metastases, radiomic features including SUVs were extracted from the primary tumor only. NHOCs and NHOPs were computed using 2 approaches: the normalized distance from the localization of SUVmax or SUVpeak to the tumor centroid or perimeter. Bland-Altman analyses were performed to investigate the impact of both spatial resolution (comparing PET images with and without gaussian postfiltering) and image sampling (comparing 2 voxel sizes) on feature values. The correlation of NHOCs and NHOPs with other features was studied using Spearman correlation coefficients (r). The ability of NHOCs and NHOPs to predict overall survival (OS) was estimated using the Kaplan-Meier method. Results: In cohort 1, NHOC and NHOP features were more robust to image filtering and to resampling than were SUVs. The correlations were weak between NHOCs and NHOPs (r ≤ 0.45) and between NHOCs or NHOPs and any other radiomic features (r ≤ 0.60). In cohort 2, the patients with short OS demonstrated higher NHOCs and lower NHOPs than those with long OS. NHOCs significantly distinguished 2 survival profiles in patients treated with immunotherapy (log-rank test, P < 0.01), whereas NHOPs stratified patients regarding OS in the targeted therapy (P = 0.02) and immunotherapy (P < 0.01) subcohorts. Conclusion: Our findings suggest that even in advanced NSCLC patients, NHOC and NHOP features pertaining to the primary tumor have prognostic potential. Moreover, these features appeared to be robust with respect to imaging protocol parameters and complementary to other radiomic features and are now available in LIFEx software to be independently tested by others.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/terapia , Fluorodesoxiglucosa F18 , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/terapia , Pronóstico , Estudios Retrospectivos , Biomarcadores , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos
2.
EMBO J ; 39(11): e104419, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32350921

RESUMEN

Two mitotic cyclin types, cyclin A and B, exist in higher eukaryotes, but their specialised functions in mitosis are incompletely understood. Using degron tags for rapid inducible protein removal, we analyse how acute depletion of these proteins affects mitosis. Loss of cyclin A in G2-phase prevents mitotic entry. Cells lacking cyclin B can enter mitosis and phosphorylate most mitotic proteins, because of parallel PP2A:B55 phosphatase inactivation by Greatwall kinase. The final barrier to mitotic establishment corresponds to nuclear envelope breakdown, which requires a decisive shift in the balance of cyclin-dependent kinase Cdk1 and PP2A:B55 activity. Beyond this point, cyclin B/Cdk1 is essential for phosphorylation of a distinct subset of mitotic Cdk1 substrates that are essential to complete cell division. Our results identify how cyclin A, cyclin B and Greatwall kinase coordinate mitotic progression by increasing levels of Cdk1-dependent substrate phosphorylation.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Ciclina A/metabolismo , Ciclina B/metabolismo , Mitosis , Proteína Fosfatasa 2/metabolismo , Proteína Quinasa CDC2/genética , Línea Celular , Ciclina A/genética , Ciclina B/genética , Humanos , Proteína Fosfatasa 2/genética
3.
J Cell Biol ; 218(5): 1531-1552, 2019 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-30858191

RESUMEN

When human cells enter mitosis, chromosomes undergo substantial changes in their organization to resolve sister chromatids and compact chromosomes. To comprehend the timing and coordination of these events, we need to evaluate the progression of both sister chromatid resolution and chromosome compaction in one assay. Here we achieved this by analyzing changes in configuration of marked chromosome regions over time, with high spatial and temporal resolution. This assay showed that sister chromatids cycle between nonresolved and partially resolved states with an interval of a few minutes during G2 phase before completing full resolution in prophase. Cohesins and WAPL antagonistically regulate sister chromatid resolution in late G2 and prophase while local enrichment of cohesin on chromosomes prevents precocious sister chromatid resolution. Moreover, our assay allowed quantitative evaluation of condensin II and I activities, which differentially promote sister chromatid resolution and chromosome compaction, respectively. Our assay reveals novel aspects of dynamics in mitotic chromosome resolution and compaction that were previously obscure in global chromosome assays.


Asunto(s)
Cromosomas Humanos , Fase G2 , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente/métodos , Mitosis/fisiología , Profase , Intercambio de Cromátides Hermanas , Adenosina Trifosfatasas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Proteínas de Unión al ADN/metabolismo , Humanos , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Cohesinas
4.
Mol Cell ; 71(1): 117-128.e3, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-30008317

RESUMEN

To maintain genome stability, cells need to replicate their DNA before dividing. Upon completion of bulk DNA synthesis, the mitotic kinases CDK1 and PLK1 become active and drive entry into mitosis. Here, we have tested the hypothesis that DNA replication determines the timing of mitotic kinase activation. Using an optimized double-degron system, together with kinase inhibitors to enforce tight inhibition of key proteins, we find that human cells unable to initiate DNA replication prematurely enter mitosis. Preventing DNA replication licensing and/or firing causes prompt activation of CDK1 and PLK1 in S phase. In the presence of DNA replication, inhibition of CHK1 and p38 leads to premature activation of mitotic kinases, which induces severe replication stress. Our results demonstrate that, rather than merely a cell cycle output, DNA replication is an integral signaling component that restricts activation of mitotic kinases. DNA replication thus functions as a brake that determines cell cycle duration.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mitosis , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Fase S , Proteína Quinasa CDC2/genética , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Activación Enzimática , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Quinasa Tipo Polo 1
5.
Bioessays ; 38(7): 627-43, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27231150

RESUMEN

Mitotic entry and exit are switch-like transitions that are driven by the activation and inactivation of Cdk1 and mitotic cyclins. This simple on/off reaction turns out to be a complex interplay of various reversible reactions, feedback loops, and thresholds that involve both the direct regulators of Cdk1 and its counteracting phosphatases. In this review, we summarize the interplay of the major components of the system and discuss how they work together to generate robustness, bistability, and irreversibility. We propose that it may be beneficial to regard the entry and exit reactions as two separate reversible switches that are distinguished by differences in the state of phosphatase activity, mitotic proteolysis, and a dramatic rearrangement of cellular components after nuclear envelope breakdown, and discuss how the major Cdk1 activity thresholds could be determined for these transitions.


Asunto(s)
Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/fisiología , Mitosis , Animales , Humanos
6.
Nucleic Acids Res ; 44(10): 4721-33, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-26921407

RESUMEN

DNA ends get exposed in cells upon either normal or dysfunctional cellular processes or molecular events. Telomeres need to be protected by the shelterin complex to avoid junctions occurring between chromosomes while failing topoisomerases or clustered DNA damage processing may produce double-strand breaks, thus requiring swift repair to avoid cell death. The rigorous study of the great many proteins involved in the maintenance of DNA integrity is a challenging task because of the innumerous unspecific electrostatic and/or hydrophobic DNA-protein interactions that arise due to the chemical nature of DNA. We devised a technique that discriminates the proteins recruited specifically at DNA ends from those that bind to DNA because of a generic affinity for the double helix. Our study shows that the DNA ends proteome comprises proteins of an unexpectedly wide functional spectrum, ranging from DNA repair to ribosome biogenesis and cytoskeleton, including novel proteins of undocumented function. A global mapping of the identified proteome on published DNA repair protein networks demonstrated the excellent specificity and functional coverage of our purification technique. Finally, the native nucleoproteic complexes that assembled specifically onto DNA ends were shown to be endowed with a highly efficient DNA repair activity.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Proteoma/metabolismo , Cromatografía de Afinidad/métodos , Reparación del ADN , Células HeLa , Humanos , Nucleoproteínas/metabolismo
7.
Cell Cycle ; 15(7): 908-18, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26694751

RESUMEN

PrimPol is a recently identified member of the archaeo-eukaryote primase (AEP) family of primase-polymerases. It has been shown that this mitochondrial and nuclear localized enzyme plays roles in the maintenance of both unperturbed replication fork progression and in the bypass of lesions after DNA damage. Here, we utilized an avian (DT40) knockout cell line to further study the consequences of loss of PrimPol (PrimPol(-/-)) on the downstream maintenance of cells after UV damage. We report that PrimPol(-/-) cells are more sensitive to UV-C irradiation in colony survival assays than Pol η-deficient cells. Although this increased UV sensitivity is not evident in cell viability assays, we show that this discrepancy is due to an enhanced checkpoint arrest after UV-C damage in the absence of PrimPol. PrimPol(-/-) arrested cells become stalled in G2, where they are protected from UV-induced cell death. Despite lacking an enzyme required for the bypass and maintenance of replication fork progression in the presence of UV damage, we show that PrimPol(-/-) cells actually have an advantage in the presence of a Chk1 inhibitor due to their slow progression through S-phase.


Asunto(s)
Daño del ADN , ADN Primasa/fisiología , ADN Polimerasa Dirigida por ADN/fisiología , Puntos de Control de la Fase G2 del Ciclo Celular , Rayos Ultravioleta , Animales , Muerte Celular , Línea Celular , Proliferación Celular , Supervivencia Celular/efectos de la radiación , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Pollos , ADN Primasa/genética , ADN Polimerasa Dirigida por ADN/genética , Fase G2/efectos de la radiación , Técnicas de Inactivación de Genes , Mitosis/efectos de la radiación , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología
8.
EMBO J ; 33(6): 648-64, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24534090

RESUMEN

Chromatin proteins mediate replication, regulate expression, and ensure integrity of the genome. So far, a comprehensive inventory of interphase chromatin has not been determined. This is largely due to its heterogeneous and dynamic composition, which makes conclusive biochemical purification difficult, if not impossible. As a fuzzy organelle, it defies classical organellar proteomics and cannot be described by a single and ultimate list of protein components. Instead, we propose a new approach that provides a quantitative assessment of a protein's probability to function in chromatin. We integrate chromatin composition over a range of different biochemical and biological conditions. This resulted in interphase chromatin probabilities for 7635 human proteins, including 1840 previously uncharacterized proteins. We demonstrate the power of our large-scale data-driven annotation during the analysis of cyclin-dependent kinase (CDK) regulation in chromatin. Quantitative protein ontologies may provide a general alternative to list-based investigations of organelles and complement Gene Ontology.


Asunto(s)
Proteínas de Ciclo Celular/genética , Cromatina/genética , Quinasas Ciclina-Dependientes/metabolismo , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica/genética , Interfase/genética , Proteómica/métodos , Inteligencia Artificial , Proteínas de Ciclo Celular/clasificación , Centrifugación , Quinasas Ciclina-Dependientes/genética , Electroforesis en Gel de Poliacrilamida , Citometría de Flujo , Ontología de Genes , Humanos , Espectrometría de Masas , Modelos Biológicos , Anotación de Secuencia Molecular
9.
FEBS J ; 281(5): 1417-1431, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24423253

RESUMEN

Inhibition of insulin-like growth factor I (IGF-I) signaling is a promising antitumor strategy and nucleic acid-based approaches have been investigated to target genes in the pathway. Here, we sought to modulate IGF-I transcriptional activity using triple helix formation. The IGF-I P1 promoter contains a purine/pyrimidine (R/Y) sequence that is pivotal for transcription as determined by deletion analysis and can be targeted with a triplex-forming oligonucleotide (TFO). We designed modified purine- and pyrimidine-rich TFOs to bind to the R/Y sequence. To monitor TFO binding, we developed a fluorescence-based gel-retardation assay that allowed independent detection of each strand in three-stranded complexes using end-labeling with Alexa 488, cyanine (Cy)3 and Cy5 fluorochromes. We characterized TFOs for their ability to inhibit restriction enzyme activity, compete with DNA-binding proteins and inhibit IGF-I transcription in reporter assays. TFOs containing modified nucleobases, 5-methyl-2'-deoxycytidine and 5-propynyl-2'-deoxyuridine, specifically inhibited restriction enzyme cleavage and formed triplexes on the P1 promoter fragment. In cells, deletion of the R/Y-rich sequence led to 48% transcriptional inhibition of a reporter gene. Transfection with TFOs inhibited reporter gene activity to a similar extent, whereas transcription from a mutant construct with an interrupted R/Y region was unaffected, strongly suggesting the involvement of triplex formation in the inhibitory mechanisms. Our results indicate that nuclease-resistant TFOs will likely inhibit endogenous IGF-I gene function in cells.


Asunto(s)
ADN/química , ADN/genética , Factor I del Crecimiento Similar a la Insulina/genética , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , Animales , Secuencia de Bases , Línea Celular , ADN/metabolismo , Regulación hacia Abajo , Fluorescencia , Colorantes Fluorescentes , Genes Reporteros , Factor I del Crecimiento Similar a la Insulina/metabolismo , Unión Proteica , Ratas
10.
PLoS Genet ; 10(1): e1004004, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24391510

RESUMEN

Entry into mitosis is triggered by activation of Cdk1 and inactivation of its counteracting phosphatase PP2A/B55. Greatwall kinase inactivates PP2A/B55 via its substrates Ensa and ARPP19. Both Greatwall and Ensa/ARPP19 are regulated by phosphorylation, but the dynamic regulation of Greatwall activity and the phosphatases that control Greatwall kinase and its substrates are poorly understood. To address these questions we applied a combination of mathematical modelling and experiments using phospho-specific antibodies to monitor Greatwall, Ensa/ARPP19 and Cdk substrate phosphorylation during mitotic entry and exit. We demonstrate that PP2A/B55 is required for Gwl dephosphorylation at the essential Cdk site Thr194. Ensa/ARPP19 dephosphorylation is mediated by the RNA Polymerase II carboxy terminal domain phosphatase Fcp1. Surprisingly, inhibition or depletion of neither Fcp1 nor PP2A appears to block dephosphorylation of the bulk of mitotic Cdk1 substrates during mitotic exit. Taken together our results suggest a hierarchy of phosphatases coordinating Greatwall, Ensa/ARPP19 and Cdk substrate dephosphorylation during mitotic exit.


Asunto(s)
Proteínas Asociadas a Microtúbulos/genética , Mitosis/genética , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas/genética , Proteína Fosfatasa 2/genética , Proteínas Serina-Treonina Quinasas/genética , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Ciclo Celular/genética , Ciclina B/genética , Ciclina B/metabolismo , Redes Reguladoras de Genes/genética , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Fosfoproteínas/metabolismo , Fosforilación/genética , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
11.
Open Biol ; 3(3): 120185, 2013 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-23516109

RESUMEN

The correct assembly and timely disassembly of the mitotic spindle is crucial for the propagation of the genome during cell division. Aurora kinases play a central role in orchestrating bipolar spindle establishment, chromosome alignment and segregation. In most eukaryotes, ranging from amoebas to humans, Aurora activity appears to be required both at the spindle pole and the kinetochore, and these activities are often split between two different Aurora paralogues, termed Aurora A and B. Polar and equatorial functions of Aurora kinases have generally been considered separately, with Aurora A being mostly involved in centrosome dynamics, whereas Aurora B coordinates kinetochore attachment and cytokinesis. However, double inactivation of both Aurora A and B results in a dramatic synergy that abolishes chromosome segregation. This suggests that these two activities jointly coordinate mitotic progression. Accordingly, recent evidence suggests that Aurora A and B work together in both spindle assembly in metaphase and disassembly in anaphase. Here, we provide an outlook on these shared functions of the Auroras, discuss the evolution of this family of mitotic kinases and speculate why Aurora kinase activity may be required at both ends of the spindle microtubules.


Asunto(s)
Aurora Quinasas/metabolismo , Huso Acromático/metabolismo , Anafase , Aurora Quinasas/clasificación , Centrosoma/metabolismo , Evolución Molecular , Humanos , Microtúbulos/metabolismo
12.
J Cell Biol ; 195(7): 1103-13, 2011 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-22184196

RESUMEN

We established a conditional deletion of Aurora A kinase (AurA) in Cdk1 analogue-sensitive DT40 cells to analyze AurA knockout phenotypes after Cdk1 activation. In the absence of AurA, cells form bipolar spindles but fail to properly align their chromosomes and exit mitosis with segregation errors. The resulting daughter cells exhibit a variety of phenotypes and are highly aneuploid. Aurora B kinase (AurB)-inhibited cells show a similar chromosome alignment problem and cytokinesis defects, resulting in binucleate daughter cells. Conversely, cells lacking AurA and AurB activity exit mitosis without anaphase, forming polyploid daughter cells with a single nucleus. Strikingly, inhibition of both AurA and AurB results in a failure to depolymerize spindle microtubules (MTs) in anaphase after Cdk1 inactivation. These results suggest an essential combined function of AurA and AurB in chromosome segregation and anaphase MT dynamics.


Asunto(s)
Anafase , Segregación Cromosómica , Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Aneuploidia , Animales , Aurora Quinasas , Proteína Quinasa CDC2/metabolismo , Células Cultivadas , Pollos , Mitosis , Fenotipo , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal
13.
EMBO J ; 30(11): 2233-45, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21522128

RESUMEN

Cyclin-dependent kinase 1 (Cdk1) is thought to trigger centrosome separation in late G2 phase by phosphorylating the motor protein Eg5 at Thr927. However, the precise control mechanism of centrosome separation remains to be understood. Here, we report that in G2 phase polo-like kinase 1 (Plk1) can trigger centrosome separation independently of Cdk1. We find that Plk1 is required for both C-Nap1 displacement and for Eg5 localization on the centrosome. Moreover, Cdk2 compensates for Cdk1, and phosphorylates Eg5 at Thr927. Nevertheless, Plk1-driven centrosome separation is slow and staggering, while Cdk1 triggers fast movement of the centrosomes. We find that actin-dependent Eg5-opposing forces slow down separation in G2 phase. Strikingly, actin depolymerization, as well as destabilization of interphase microtubules (MTs), is sufficient to remove this obstruction and to speed up Plk1-dependent separation. Conversely, MT stabilization in mitosis slows down Cdk1-dependent centrosome movement. Our findings implicate the modulation of MT stability in G2 and M phase as a regulatory element in the control of centrosome separation.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , División Celular , Centrosoma/metabolismo , Cinesinas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Línea Celular , Humanos , Quinasa Tipo Polo 1
14.
J Cell Biol ; 190(3): 297-305, 2010 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-20679434

RESUMEN

Using chemical genetics to reversibly inhibit Cdk1, we find that cells arrested in late G2 are unable to delay mitotic entry after irradiation. Late G2 cells detect DNA damage lesions and form gamma-H2AX foci but fail to activate Chk1. This reflects a lack of DNA double-strand break processing because late G2 cells fail to recruit RPA (replication protein A), ATR (ataxia telangiectasia and Rad3 related), Rad51, or CtIP (C-terminal interacting protein) to sites of radiation-induced damage, events essential for both checkpoint activation and initiation of DNA repair by homologous recombination. Remarkably, inhibition of Akt/PKB (protein kinase B) restores DNA damage processing and Chk1 activation after irradiation in late G2. These data demonstrate a previously unrecognized role for Akt in cell cycle regulation of DNA repair and checkpoint activation. Because Akt/PKB is frequently activated in many tumor types, these findings have important implications for the evolution and therapy of such cancers.


Asunto(s)
Daño del ADN , Fase G2 , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Células Cultivadas , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Pollos , ADN/metabolismo , Humanos , Morfolinas/farmacología , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Pironas/farmacología , Relación Estructura-Actividad
15.
Biochimie ; 90(9): 1265-72, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18452716

RESUMEN

Numerous biological mechanisms depend on nucleic acid--protein interactions. The first step to the understanding of these mechanisms is to identify interacting molecules. Knowing one partner, the identification of other associated molecular species can be carried out using affinity-based purification procedures. When the nucleic acid-binding protein is known, the nucleic acid can be isolated and identified by sensitive techniques such as polymerase chain reaction followed by DNA sequencing or hybridization on chips. The reverse identification procedure is less straightforward in part because interesting nucleic acid-binding proteins are generally of low abundance and there are no methods to amplify amino acid sequences. In this article, we will review the strategies that have been developed to identify nucleic acid-binding proteins. We will focus on methods permitting the identification of these proteins without a priori knowledge of protein candidates.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Animales , Proteínas de Unión al ADN/genética , Bases de Datos de Proteínas , Humanos , Análisis por Micromatrices , Unión Proteica , Proteínas de Unión al ARN/genética
16.
Nucleic Acids Res ; 35(13): e92, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17617645

RESUMEN

Purification of specific DNA-protein complexes is a challenging task, as the involved interactions can be both electrostatic/H-bond and hydrophobic. The chromatographic stringency needed to obtain reasonable purifications uses salts and detergents. However, these components elicit the removal of proteins unspecifically bound to the chromatographic support itself, thus contaminating the purification products. In this work, a photocleavable linker connected the target oligonucleotidic sequence to the chromatographic beads so as to allow the irradiation-based release of the purified DNA-protein complexes off the beads. Our bioanalytical conditions were validated by purifying the tetracycline repressor protein onto a specific oligonucleotide. The purification factor was unprecedented, with a single contaminant. The robustness of our method was challenged by applying it to the purification of multiprotein assemblies forming onto DNA damage-mimicking oligonucleotides. The purified components were identified as well-known DNA repair proteins, and were shown to retain their enzymatic activities, as seen by monitoring DNA ligation products. Remarkably, kinase activities, also monitored, were found to be distinct on the beads and on the purified DNA-protein complexes, showing the benefits to uncouple the DNA-protein assemblies from the beads for a proper understanding of biochemical regulatory mechanisms involved in the DNA-protein assemblies.


Asunto(s)
Cromatografía de Afinidad/métodos , Proteínas de Unión al ADN/aislamiento & purificación , Extractos Celulares/química , Enzimas Reparadoras del ADN/aislamiento & purificación , Enzimas Reparadoras del ADN/metabolismo , Electroforesis en Gel Bidimensional , Electroforesis en Gel de Poliacrilamida , Células HeLa , Humanos , Oligonucleótidos/química , Fotoquímica , Proteínas Represoras/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...