Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Plant Cell Environ ; 44(11): 3655-3666, 2021 11.
Article En | MEDLINE | ID: mdl-34486744

Mistletoe-host systems exemplify an intimate and chronic relationship where mistletoes represent protracted stress for hosts, causing long-lasting impact. Although host changes in morphological and reproductive traits due to parasitism are well known, shifts in their physiological system, altering metabolite concentrations, are less known due to the difficulty of quantification. Here, we use ecometabolomic techniques in the plant-plant interaction, comparing the complete metabolome of the leaves from mistletoe (Viscum album) and needles from their host (Pinus nigra), both parasitized and unparasitized, to elucidate host responses to plant parasitism. Our results show that mistletoe acquires metabolites basically from the primary metabolism of its host and synthesizes its own defence compounds. In response to mistletoe parasitism, pines modify a quarter of their metabolome over the year, making the pine canopy metabolome more homogeneous by reducing the seasonal shifts in top-down stratification. Overall, host pines increase antioxidant metabolites, suggesting oxidative stress, and also increase part of the metabolites required by mistletoe, which act as a permanent sink of host resources. In conclusion, by exerting biotic stress and thereby causing permanent systemic change, mistletoe parasitism generates a new host-plant metabolic identity available in forest canopy, which could have notable ecological consequences in the forest ecosystem.


Host-Parasite Interactions , Metabolome , Pinus/metabolism , Viscum album/physiology , Forests , Pinus/parasitology , Spain
2.
Int J Mol Sci ; 20(1)2018 Dec 24.
Article En | MEDLINE | ID: mdl-30586850

Many studies have addressed several plant-insect interaction topics at nutritional, molecular, physiological, and evolutionary levels. However, it is still unknown how flexible the metabolism and the nutritional content of specialist insect herbivores feeding on different closely related plants can be. We performed elemental, stoichiometric, and metabolomics analyses on leaves of two coexisting Pinus sylvestris subspecies and on their main insect herbivore; the caterpillar of the processionary moth (Thaumetopoea pityocampa). Caterpillars feeding on different pine subspecies had distinct overall metabolome structure, accounting for over 10% of the total variability. Although plants and insects have very divergent metabolomes, caterpillars showed certain resemblance to their plant-host metabolome. In addition, few plant-related secondary metabolites were found accumulated in caterpillar tissues which could potentially be used for self-defense. Caterpillars feeding on N and P richer needles had lower N and P tissue concentration and higher C:N and C:P ratios, suggesting that nutrient transfer is not necessarily linear through trophic levels and other plant-metabolic factors could be interfering. This exploratory study showed that little chemical differences between plant food sources can impact the overall metabolome of specialist insect herbivores. Significant nutritional shifts in herbivore tissues could lead to larger changes of the trophic web structure.


Metabolome , Metabolomics , Moths/physiology , Pinus sylvestris/metabolism , Animals , Chromatography, High Pressure Liquid , Feeding Behavior , Herbivory , Host-Parasite Interactions , Larva/chemistry , Larva/physiology , Mass Spectrometry , Moths/growth & development , Nitrogen/analysis , Phosphorus/analysis , Pinus sylvestris/parasitology , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Leaves/parasitology , Principal Component Analysis , Species Specificity
3.
Ecol Evol ; 7(21): 8976-8988, 2017 11.
Article En | MEDLINE | ID: mdl-29152192

Metabolomes, as chemical phenotypes of organisms, are likely not only shaped by the environment but also by common ancestry. If this is the case, we expect that closely related species of pines will tend to reach similar metabolomic solutions to the same environmental stressors. We examined the metabolomes of two sympatric subspecies of Pinus sylvestris in Sierra Nevada (southern Iberian Peninsula), in summer and winter and exposed to folivory by the pine processionary moth. The overall metabolomes differed between the subspecies but both tended to respond more similarly to folivory. The metabolomes of the subspecies were more dissimilar in summer than in winter, and iberica trees had higher concentrations of metabolites directly related to drought stress. Our results are consistent with the notion that certain plant metabolic responses associated with folivory have been phylogenetically conserved. The larger divergence between subspecies metabolomes in summer is likely due to the warmer and drier conditions that the northern iberica subspecies experience in Sierra Nevada. Our results provide crucial insights into how iberica populations would respond to the predicted conditions of climate change under an increased defoliation in the Mediterranean Basin.

4.
Ecol Appl ; 20(4): 1053-60, 2010 Jun.
Article En | MEDLINE | ID: mdl-20597289

This study examines the consequences of adjacent elements for a given patch, through their effects on zoochorous dispersion by frugivorous birds. The case study consists of pine plantations (the focal patch) adjacent to other patches of native vegetation (mixed patches of native forest and shrublands), and/or pine plantations. Our hypothesis is that input of native woody species propagules generated by frugivorous birds within plantations strongly depends on the nature of the surrounding vegetation. To test this hypothesis, we studied frugivorous-bird abundance, seed dispersion, and seedling establishment in nine pine plantation plots in contact with patches of native vegetation. To quantify adjacency arrangement effects, we used the percentage of common border between a patch and each of its adjacent elements. Frugivorous bird occurrence in pine plantations is influenced by the adjacent vegetation: the greater the contact with native vegetation patches, the more abundant were the frugivorous birds within pine plantations. Furthermore, frugivorous birds introduce into plantations the seeds of a large sample of native fleshy-fruited species. The results confirm the hypothesis that zoochorous seed rain is strongly determined by the kind of vegetation surrounding a given plantation. This finding underlines the importance of the composition of the mosaic surrounding plantations and the availability of mobile link species as key landscape features conditioning passive restoration processes.


Birds , Ecosystem , Forestry , Fruit , Pinus sylvestris , Animals , Seedlings , Spain
...