Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 100
1.
ACS Cent Sci ; 10(5): 1084-1093, 2024 May 22.
Article En | MEDLINE | ID: mdl-38799674

Antiviral nucleoside analogues (e.g., Molnupiravir, Remdesivir) played key roles in the treatment of COVID-19 by targeting SARS-CoV-2 RNA-dependent RNA polymerase (RdRp). The nucleoside of Molnupiravir, N4-hydroxycytidine (NHC), exists in two tautomeric forms that pair either with G or A within the RdRp active site, causing an accumulation of viral RNA mutations during replication. Detailed insights into the tautomeric states within base pairs and the structural influence of NHC in RNA are still missing. In this study, we investigate the properties of NHC:G and NHC:A base pairs in a self-complementary RNA duplex by UV thermal melting and NMR spectroscopy using atom-specifically 15N-labeled versions of NHC that were incorporated into oligonucleotides by solid-phase synthesis. NMR analysis revealed that NHC forms a Watson-Crick base pair with G via its amino form, whereas two equally populated conformations were detected for the NHC:A base pair: a weakly hydrogen-bonded Watson-Crick base pair with NHC in the imino form and another conformation with A shifted toward the minor groove. Moreover, we found a variable influence of NHC:G and NHC:A base pairs on the neighboring duplex environment. This study provides conclusive experimental evidence for the existence of two tautomeric forms of NHC within RNA base pairs.

2.
Nat Struct Mol Biol ; 2024 May 28.
Article En | MEDLINE | ID: mdl-38806694

The superfamily 2 helicase XPD is a central component of the general transcription factor II H (TFIIH), which is essential for transcription and nucleotide excision DNA repair (NER). Within these two processes, the helicase function of XPD is vital for NER but not for transcription initiation, where XPD acts only as a scaffold for other factors. Using cryo-EM, we deciphered one of the most enigmatic steps in XPD helicase action: the active separation of double-stranded DNA (dsDNA) and its stalling upon approaching a DNA interstrand cross-link, a highly toxic form of DNA damage. The structure shows how dsDNA is separated and reveals a highly unusual involvement of the Arch domain in active dsDNA separation. Combined with mutagenesis and biochemical analyses, we identified distinct functional regions important for helicase activity. Surprisingly, those areas also affect core TFIIH translocase activity, revealing a yet unencountered function of XPD within the TFIIH scaffold. In summary, our data provide a universal basis for NER bubble formation, XPD damage verification and XPG incision.

3.
Annu Rev Biochem ; 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38598854

Methylation of RNA nucleotides represents an important layer of gene expression regulation, and perturbation of the RNA methylome is associated with pathophysiology. In cells, RNA methylations are installed by RNA methyltransferases (RNMTs) that are specialized to catalyze particular types of methylation (ribose or different base positions). Furthermore, RNMTs must specifically recognize their appropriate target RNAs within the RNA-dense cellular environment. Some RNMTs are catalytically active alone and achieve target specificity via recognition of sequence motifs and/or RNA structures. Others function together with protein cofactors that can influence stability, S-adenosyl-L-methionine binding, and RNA affinity as well as aiding specific recruitment and catalytic activity. Association of RNMTs with guide RNAs represents an alternative mechanism to direct site-specific methylation by an RNMT that lacks intrinsic specificity. Recently, ribozyme-catalyzed methylation of RNA has been achieved in vitro, and here, we compare these different strategies for RNA methylation from structural and mechanistic perspectives.

4.
RSC Chem Biol ; 5(4): 271-272, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38576727

Ralph Kleiner (Princeton University, USA), Claudia Höbartner (University of Würzburg, Germany) and Guifang Jia (Peking University, China) introduce the themed collection on 'The Epitranscriptome'.

5.
Nat Commun ; 15(1): 3323, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38637518

Direct RNA sequencing offers the possibility to simultaneously identify canonical bases and epi-transcriptomic modifications in each single RNA molecule. Thus far, the development of computational methods has been hampered by the lack of biologically realistic training data that carries modification labels at molecular resolution. Here, we report on the synthesis of such samples and the development of a bespoke algorithm, mAFiA (m6A Finding Algorithm), that accurately detects single m6A nucleotides in both synthetic RNAs and natural mRNA on single read level. Our approach uncovers distinct modification patterns in single molecules that would appear identical at the ensemble level. Compared to existing methods, mAFiA also demonstrates improved accuracy in measuring site-level m6A stoichiometry in biological samples.


Nucleotides , RNA , RNA/genetics , RNA, Messenger/genetics , Base Sequence , Sequence Analysis, RNA/methods
6.
J Am Chem Soc ; 146(11): 7803-7810, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38445613

N6-methyladenosine (m6A) is an important modified nucleoside in cellular RNA associated with multiple cellular processes and is implicated in diseases. The enzymes associated with the dynamic installation and removal of m6A are heavily investigated targets for drug research, which requires detailed knowledge of the recognition modes of m6A by proteins. Here, we use atomic mutagenesis of m6A to systematically investigate the mechanisms of the two human m6A demethylase enzymes FTO and ALKBH5 and the binding modes of YTH reader proteins YTHDF2/DC1/DC2. Atomic mutagenesis refers to atom-specific changes that are introduced by chemical synthesis, such as the replacement of nitrogen by carbon atoms. Synthetic RNA oligonucleotides containing site-specifically incorporated 1-deaza-, 3-deaza-, and 7-deaza-m6A nucleosides were prepared by solid-phase synthesis and their RNA binding and demethylation by recombinant proteins were evaluated. We found distinct differences in substrate recognition and transformation and revealed structural preferences for the enzymatic activity. The deaza m6A analogues introduced in this work will be useful probes for other proteins in m6A research.


Adenosine/analogs & derivatives , RNA , Humans , RNA/chemistry , Mutagenesis , Recombinant Proteins , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism
7.
RNA ; 30(6): 624-643, 2024 May 16.
Article En | MEDLINE | ID: mdl-38413166

Antisense oligomer (ASO)-based antibiotics that target mRNAs of essential bacterial genes have great potential for counteracting antimicrobial resistance and for precision microbiome editing. To date, the development of such antisense antibiotics has primarily focused on using phosphorodiamidate morpholino (PMO) and peptide nucleic acid (PNA) backbones, largely ignoring the growing number of chemical modalities that have spurred the success of ASO-based human therapy. Here, we directly compare the activities of seven chemically distinct 10mer ASOs, all designed to target the essential gene acpP upon delivery with a KFF-peptide carrier into Salmonella. Our systematic analysis of PNA, PMO, phosphorothioate (PTO)-modified DNA, 2'-methylated RNA (RNA-OMe), 2'-methoxyethylated RNA (RNA-MOE), 2'-fluorinated RNA (RNA-F), and 2'-4'-locked RNA (LNA) is based on a variety of in vitro and in vivo methods to evaluate ASO uptake, target pairing and inhibition of bacterial growth. Our data show that only PNA and PMO are efficiently delivered by the KFF peptide into Salmonella to inhibit bacterial growth. Nevertheless, the strong target binding affinity and in vitro translational repression activity of LNA and RNA-MOE make them promising modalities for antisense antibiotics that will require the identification of an effective carrier.


Anti-Bacterial Agents , Oligonucleotides, Antisense , Peptide Nucleic Acids , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Peptide Nucleic Acids/pharmacology , Peptide Nucleic Acids/chemistry , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/chemistry , Oligonucleotides, Antisense/genetics , Morpholinos/chemistry , Morpholinos/pharmacology , Morpholinos/genetics , Peptides/pharmacology , Peptides/chemistry , Peptides/genetics , Humans
8.
Org Lett ; 26(5): 1051-1055, 2024 Feb 09.
Article En | MEDLINE | ID: mdl-38285916

Two unprecedented fluorescent nucleosides that feature BN-doped polycyclic aromatic hydrocarbons are presented. One of them, having a BN-modified phenanthrene moiety incorporated, shows blue fluorescence but suffers from poor stability under aqueous conditions. The other nucleoside comprises an internally BN-doped pyrene as the chromophore. It shows green fluorescence in various solvents and is stable under aqueous and alkaline conditions.

9.
Phys Chem Chem Phys ; 26(1): 241-248, 2023 Dec 21.
Article En | MEDLINE | ID: mdl-38054366

Förster resonant energy transfer (FRET) can be utilized in the study of tertiary structures of RNA aptamers, which bind specific fluorophoric ligands to form a fluorogenic aptamer complex. By introducing the emissive nucleobase analog 4-cyanoindole into the fluorogenic Chili RNA aptamer a FRET pair was established. The interpretation of studies aiming to investigate those tertiary structures using FRET, however, relies on prior knowledge about conformational properties of the nucleobase, which govern exciton transfer capabilities. Herein we employed classical molecular dynamics combined with Förster exciton theory to elucidate the preferred orientation relative to proximate bases and the influence on exciton transfer efficiency in multiple substitution sites. We did this by comparing the chromophoric distances emergent from MD simulations with experimental FRET data based on structural data of the native aptamer. We present the outlined methodology as a means to reliably evaluate future nucleobase analogue candidates in terms of their structural behavior and emergent exciton transfer properties as exemplified in the study of the preferred orientation of 4-cyanoindole in the Chili RNA aptamer.


Aptamers, Nucleotide , Aptamers, Nucleotide/chemistry , Fluorescence Resonance Energy Transfer/methods , Molecular Dynamics Simulation , Molecular Conformation , Fluorescent Dyes
10.
ACS Chem Biol ; 18(12): 2441-2449, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37962075

The chemical biology of native nucleic acid modifications has seen an intense upswing, first concerning DNA modifications in the field of epigenetics and then concerning RNA modifications in a field that was correspondingly rebaptized epitranscriptomics by analogy. The German Research Foundation (DFG) has funded several consortia with a scientific focus in these fields, strengthening the traditionally well-developed nucleic acid chemistry community and inciting it to team up with colleagues from the life sciences and data science to tackle interdisciplinary challenges. This Perspective focuses on the genesis, scientific outcome, and downstream impact of the DFG priority program SPP1784 and offers insight into how it fecundated further consortia in the field. Pertinent research was funded from mid-2015 to 2022, including an extension related to the coronavirus pandemic. Despite being a detriment to research activity in general, the pandemic has resulted in tremendously boosted interest in the field of RNA and RNA modifications as a consequence of their widespread and successful use in vaccination campaigns against SARS-CoV-2. Funded principal investigators published over 250 pertinent papers with a very substantial impact on the field. The program also helped to redirect numerous laboratories toward this dynamic field. Finally, SPP1784 spawned initiatives for several funded consortia that continue to drive the fields of nucleic acid modification.


Nucleic Acids , RNA , Epigenesis, Genetic , Biology
11.
Nat Chem ; 15(11): 1523-1531, 2023 Nov.
Article En | MEDLINE | ID: mdl-37667013

Post-transcriptional RNA modification methods are in high demand for site-specific RNA labelling and analysis of RNA functions. In vitro-selected ribozymes are attractive tools for RNA research and have the potential to overcome some of the limitations of chemoenzymatic approaches with repurposed methyltransferases. Here we report an alkyltransferase ribozyme that uses a synthetic, stabilized S-adenosylmethionine (SAM) analogue and catalyses the transfer of a propargyl group to a specific adenosine in the target RNA. Almost quantitative conversion was achieved within 1 h under a wide range of reaction conditions in vitro, including physiological magnesium ion concentrations. A genetically encoded version of the SAM analogue-utilizing ribozyme (SAMURI) was expressed in HEK293T cells, and intracellular propargylation of the target adenosine was confirmed by specific fluorescent labelling. SAMURI is a general tool for the site-specific installation of the smallest tag for azide-alkyne click chemistry, which can be further functionalized with fluorophores, affinity tags or other functional probes.


RNA, Catalytic , RNA , Humans , RNA/metabolism , RNA, Catalytic/genetics , S-Adenosylmethionine , HEK293 Cells , Alkylation
12.
Chem Commun (Camb) ; 59(80): 12003-12006, 2023 Oct 05.
Article En | MEDLINE | ID: mdl-37727895

We report the fluorescent nucleoside ToldU and its application as a photoresponsive crosslinker in three different DNA architectures with enhanced fluorescence emission of the crosslinked products. The fluorogenic ToldU crosslinking reaction enables the assembly of DNA polymers in a hybridization chain reaction for the concentration-dependent detection of a specific DNA sequence.


DNA , Nucleosides , Nucleic Acid Hybridization , Base Sequence , Fluorescent Dyes
13.
Angew Chem Int Ed Engl ; 62(31): e202305463, 2023 08 01.
Article En | MEDLINE | ID: mdl-37278361

Site-specific introduction of bioorthogonal handles into RNAs is in high demand for decorating RNAs with fluorophores, affinity labels or other modifications. Aldehydes represent attractive functional groups for post-synthetic bioconjugation reactions. Here, we report a ribozyme-based method for the synthesis of aldehyde-functionalized RNA by directly converting a purine nucleobase. Using the methyltransferase ribozyme MTR1 as an alkyltransferase, the reaction is initiated by site-specific N1 benzylation of purine, followed by nucleophilic ring opening and spontaneous hydrolysis under mild conditions to yield a 5-amino-4-formylimidazole residue in good yields. The modified nucleotide is accessible to aldehyde-reactive probes, as demonstrated by the conjugation of biotin or fluorescent dyes to short synthetic RNAs and tRNA transcripts. Upon fluorogenic condensation with a 2,3,3-trimethylindole, a novel hemicyanine chromophore was generated directly on the RNA. This work expands the MTR1 ribozyme's area of application from a methyltransferase to a tool for site-specific late-stage functionalization of RNA.


RNA, Catalytic , RNA , RNA/chemistry , RNA, Catalytic/chemistry , Catalysis , Aldehydes , Methyltransferases , Fluorescent Dyes/chemistry
14.
Chem Commun (Camb) ; 59(48): 7395-7398, 2023 Jun 13.
Article En | MEDLINE | ID: mdl-37232337

We report the synthesis and spectroscopic analysis of RNA containing the barbituric acid merocyanine rBAM2 as a nucleobase surrogate. Incorporation into RNA strands by solid-phase synthesis leads to fluorescence enhancement compared to the free chromophore. In addition, linear absorption studies show the formation of an excitonically coupled H-type dimer in the hybridized duplex. Ultrafast third- and fifth-order transient absorption spectroscopy of this non-fluorescent dimer suggests immediate (sub-200 fs) exciton transfer and annihilation due to the proximity of the rBAM2 units.

15.
J Am Chem Soc ; 145(17): 9428-9433, 2023 05 03.
Article En | MEDLINE | ID: mdl-37071840

Covalent crosslinking of DNA strands provides a useful tool for medical, biochemical, and DNA nanotechnology applications. Here we present a light-induced interstrand DNA crosslinking reaction using the modified nucleoside 5-phenylethynyl-2'-deoxyuridine (PhedU). The crosslinking ability of PhedU was programmed by base pairing and by metal ion interaction at the Watson-Crick base pairing site. Rotation to intrahelical positions was favored by hydrophobic stacking and enabled an unexpected photochemical alkene-alkyne [2 + 2] cycloaddition within the DNA duplex, resulting in efficient formation of a PhedU dimer after short irradiation times of a few seconds. A PhedU-dimer-containing DNA was shown to efficiently bind a helicase complex, but the covalent crosslink completely prevented DNA unwinding, suggesting possible applications in biochemistry or structural biology.


DNA , Nucleosides , Nucleic Acid Conformation , Base Pairing , DNA/chemistry , Metals , Cross-Linking Reagents/chemistry
16.
Methods Mol Biol ; 2570: 155-173, 2023.
Article En | MEDLINE | ID: mdl-36156781

Fluorogenic RNA aptamers are synthetic RNAs that have been evolved by in vitro selection methods to bind and light up conditionally fluorescent organic ligands. Compared with other probes for RNA detection, they are less invasive than hybridization-based methods (FISH, molecular beacons) and are considerably smaller than fluorescent protein-recruiting systems (MS2, Pumilio variants). Fluorogenic aptamers have therefore found widespread use as genetically encodable tags for RNA detection in live cells and have also been used in combination with riboswitches to construct versatile metabolite sensors for in vitro use. Their success builds on a fundamental understanding of their three-dimensional structure to explain the mechanisms of ligand interaction and to rationally design functional aptamer devices. In this protocol, we describe a supramolecular FRET-based structure probing method for fluorogenic aptamers that exploits distance- and orientation-dependent energy transfer efficiencies between site-specifically incorporated fluorescent nucleoside analogs and non-covalently bound ligands, exemplified by 4-cyanoindol riboside (4CI) and the DMHBI+-binding RNA aptamer Chili. This method yields structural restraints that bridge the gap between traditional low-resolution secondary structure probing methods and more elaborate high-resolution methods such as X-ray crystallography and NMR spectroscopy.


Aptamers, Nucleotide , Riboswitch , Aptamers, Nucleotide/chemistry , Fluorescence Resonance Energy Transfer , Fluorescent Dyes/chemistry , Ligands , Nucleosides , RNA/genetics
17.
Angew Chem Int Ed Engl ; 62(1): e202214456, 2023 01 02.
Article En | MEDLINE | ID: mdl-36344446

Arene-fluoroarene interactions offer outstanding possibilities for engineering of supramolecular systems, including nucleic acids. Here, we implement the tolane-perfluorotolane interaction as base pair replacement in DNA. Tolane (THH) and perfluorotolane (TFF) moieties were connected to acyclic backbone units, comprising glycol nucleic acid (GNA) or butyl nucleic acid (BuNA) building blocks, that were incorporated via phosphoramidite chemistry at opposite positions in a DNA duplex. Thermodynamic analyses by UV thermal melting revealed a compelling stabilization by THH/TFF heteropairs only when connected to the BuNA backbone, but not with the shorter GNA linker. Detailed NMR studies confirmed the preference of the BuNA backbone for enhanced polar π-stacking. This work defines how orthogonal supramolecular interactions can be tailored by small constitutional changes in the DNA backbone, and it inspires future studies of arene-fluoroarene-programmed assembly of DNA.


DNA , Nucleic Acids , Base Pairing , DNA/chemistry , Nucleic Acids/chemistry , Glycols/chemistry , Thermodynamics , Nucleic Acid Conformation
18.
Methods Mol Biol ; 2533: 167-179, 2022.
Article En | MEDLINE | ID: mdl-35796988

Deoxyribozymes are artificially evolved DNA molecules with catalytic abilities. RNA-cleaving deoxyribozymes have been recognized as an efficient tool for detection of modifications in target RNAs and provide an alternative to traditional and modern methods for detection of ribose or nucleobase methylation. However, there are only few examples of DNA enzymes that specifically reveal the presence of a certain type of modification, including N 6-methyladenosine, and the knowledge about how DNA enzymes recognize modified RNAs is still extremely limited. Therefore, DNA enzymes cannot be easily engineered for the analysis of desired RNA modifications, but are instead identified by in vitro selection from random DNA libraries using synthetic modified RNA substrates. This protocol describes a general in vitro selection stagtegy to evolve new RNA-cleaving DNA enzymes that can efficiently differentiate modified RNA substrates from their unmodified counterpart.


DNA, Catalytic , DNA/genetics , DNA, Catalytic/chemistry , Gene Library , Methylation , RNA/chemistry
19.
Nat Chem Biol ; 18(5): 547-555, 2022 05.
Article En | MEDLINE | ID: mdl-35301481

RNA-catalyzed RNA methylation was recently shown to be part of the catalytic repertoire of ribozymes. The methyltransferase ribozyme MTR1 catalyzes the site-specific synthesis of 1-methyladenosine (m1A) in RNA, using O6-methylguanine (m6G) as a methyl group donor. Here, we report the crystal structure of MTR1 at a resolution of 2.8 Å, which reveals a guanine-binding site reminiscent of natural guanine riboswitches. The structure represents the postcatalytic state of a split ribozyme in complex with the m1A-containing RNA product and the demethylated cofactor guanine. The structural data suggest the mechanistic involvement of a protonated cytidine in the methyl transfer reaction. A synergistic effect of two 2'-O-methylated ribose residues in the active site results in accelerated methyl group transfer. Supported by these results, it seems plausible that modified nucleotides may have enhanced early RNA catalysis and that metabolite-binding riboswitches may resemble inactivated ribozymes that have lost their catalytic activity during evolution.


RNA, Catalytic , Binding Sites , Catalysis , Guanine , Methyltransferases/genetics , Nucleic Acid Conformation , RNA, Catalytic/metabolism
20.
Angew Chem Int Ed Engl ; 61(21): e202200120, 2022 05 16.
Article En | MEDLINE | ID: mdl-35194914

The pseudopeptide backbone provided by N-(2-aminoethyl)-glycine oligomers with attached nucleobases has been widely utilized in peptide nucleic acids (PNAs) as DNA mimics. Here we demonstrate the suitability of this backbone for the formation of structurally defined dye stacks. Toward this goal a series of peptide merocyanine (PMC) dye oligomers connected to a N-(2-aminoethyl)-glycine backbone were prepared through peptide synthesis. Our concentration-, temperature- and solvent-dependent UV/Vis absorption studies show that under the control of dipole-dipole interactions, smaller-sized oligomers consisting of one, two or three dyes self-assemble into defined duplex structures containing two up to six chromophores. In contrast, upon further extension of the oligomer, the chosen peptide backbone cannot direct the formation of a defined duplex architecture anymore due to intramolecular aggregation between the dyes. For all aggregate species a moderate aggregation-induced emission enhancement is observed.


Peptide Nucleic Acids , Benzopyrans , Coloring Agents , Glycine/chemistry , Indoles , Peptide Nucleic Acids/chemistry , Peptides
...