Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(2): e2311059120, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38170747

RESUMEN

Atomic force microscopy with a CO-functionalized tip can be used to directly image the internal structure of a planar molecule and to characterize chemical bonds. However, hydrogen atoms usually cannot be directly observed due to their small size. At the same time, these atoms are highly important, since they can direct on-surface chemical reactions. Measuring in-plane interactions at the sides of PTCDA (3,4,9,10-perylenetetracarboxylic dianhydride) molecules with lateral force microscopy allowed us to directly identify hydrogen atoms via their repulsive signature, which we confirmed with a model incorporating radially symmetric atomic interactions. Additional features were observed in the force data and could not be explained by H-bonding of the CO tip with the PTCDA sides. Instead, they are caused by electrostatic interaction of the large dipole of the metal apex, which we verified with density functional theory. This calculation allowed us to estimate the strength of the dipole at the metal tip apex. To further confirm that this dipole generally affects measurements on weakly polarized systems, we investigated the archetypical surface adsorbate of a single CO molecule. We determined the radially symmetric atomic interaction to be valid over a large solid angle of 5.4 sr, corresponding to 82°. We therefore find that in both the PTCDA and CO systems, the underlying interaction preventing direct observations of H-bonding and causing a collapse of the radially symmetric model is the dipole at the metal apex, which plays a significant role when approaching closer than standard imaging heights.

2.
ACS Omega ; 8(45): 42457-42466, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38024737

RESUMEN

Friction is a major source of energy loss in mechanical devices. This energy loss may be minimized by creating interfaces with extremely reduced friction, i.e., superlubricity. Conventional wisdom holds that incommensurate interface structures facilitate superlubricity. Accurately describing friction necessitates the precise modeling of the interface structure. This, in turn, requires the use of accurate first-principles electronic structure methods, especially when studying organic/metal interfaces, which are highly relevant due to their tunability and propensity to form incommensurate structures. However, the system size required to calculate incommensurate structures renders such calculations intractable. As a result, studies of incommensurate interfaces have been limited to very simple model systems or strongly simplified methodology. We overcome this limitation by developing a machine-learned interatomic potential that is able to determine energies and forces for structures containing thousands to tens of thousands of atoms with an accuracy comparable to conventional first-principles methods but at a fraction of the cost. Using this approach, we quantify the breakdown of superlubricity in incommensurate structures due to the formation of static distortion waves. Moreover, we extract design principles to engineer incommensurate interface systems where the formation of static distortion waves is suppressed, which facilitates low friction coefficients.

3.
Nanoscale Adv ; 5(8): 2288-2298, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37056613

RESUMEN

Organic/inorganic interfaces are known to exhibit rich polymorphism, where different polymorphs often possess significantly different properties. Which polymorph forms during an experiment depends strongly on environmental parameters such as deposition temperature and partial pressure of the molecule to be adsorbed. To prepare desired polymorphs these parameters are varied. However, many polymorphs are difficult to access within the experimentally available temperature-pressure ranges. In this contribution, we investigate how electric fields can be used as an additional lever to make certain structures more readily accessible. On the example of tetracyanoethylene (TCNE) on Cu(111), we analyze how electric fields change the energy landscape of interface systems. TCNE on Cu(111) can form either lying or standing polymorphs, which exhibit significantly different work functions. We combine first-principles calculations with a machine-learning based structure search algorithm and ab initio thermodynamics to demonstrate that electric fields can be exploited to shift the temperature of the phase transition between standing and lying polymorphs by up to 100 K.

4.
J Chem Phys ; 156(20): 206101, 2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35649879

RESUMEN

We recently published a benchmark study of common local, semi-local, and non-local exchange correlation functionals in combination with various van der Waals (vdW) corrections, where we investigated the reproducibility of the potential energy surface of perylenetetracarboxylic dianhydride on Ag(111). This Note presents an additional benchmark of the recently developed non-local many body dispersion (MBD-NL) vdW correction, coupled with the Perdew-Burke-Ernzerhof (PBE) functional. We find that this computation method shows similar performance as the established approaches. Notably, it yields very similar results as PBE + MBD.

5.
J Phys Chem C Nanomater Interfaces ; 126(17): 7718-7727, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35558824

RESUMEN

Organic adlayers on inorganic substrates often contain adatoms, which can be incorporated within the adsorbed molecular species, forming two-dimensional metal-organic frameworks at the substrate surface. The interplay between native adatoms and adsorbed molecules significantly changes various adlayer properties such as the adsorption geometry, the bond strength between the substrate and the adsorbed species, or the work function at the interface. Here, we use dispersion-corrected density functional theory to gain insight into the energetics that drive the incorporation of native adatoms within molecular adlayers based on the prototypical, experimentally well-characterized system of F4TCNQ on Au(111). We explain the adatom-induced modifications in the adsorption geometry and the adsorption energy based on the electronic structure and charge transfer at the interface.

6.
Nanoscale ; 14(13): 5154-5162, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35302562

RESUMEN

Virtually all organic (opto)electronic devices rely on organic/inorganic interfaces with specific properties. These properties are, in turn, inextricably linked to the interface structure. Therefore, a change in structure can introduce a shift in function. If this change is reversible, it would allow constructing a switchable interface. We accomplish this with tetrachloropyrazine on Pt(111), which exhibits a double-well potential with a chemisorbed and a physisorbed minimum. These minima have significantly different adsorption geometries allowing the formation of switchable interface structures. Importantly, these structures facilitate different work function changes and coherent fractions (as would be obtained from X-ray standing wave measurements), which are ideal properties to read out the interface state. We perform surface structure search using a modified version of the SAMPLE approach and account for thermodynamic conditions using ab initio thermodynamics. This allows investigating millions of commensurate as well as higher-order commensurate interface structures. We identify three different classes of structures exhibiting different work function changes and coherent fractions. Using temperature and pressure as handles, we demonstrate the possibility of reversible switching between those different classes, creating a dynamic interface for potential applications in organic electronics.

7.
J Phys Chem C Nanomater Interfaces ; 126(5): 2868-2876, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35178141

RESUMEN

The structure and chemical composition are the key parameters influencing the properties of organic thin films deposited on inorganic substrates. Such films often display structures that substantially differ from the bulk, and the substrate has a relevant influence on their polymorphism. In this work, we illuminate the role of the substrate by studying its influence on para-benzoquinone on two different substrates, Ag(111) and graphene. We employ a combination of first-principles calculations and machine learning to identify the energetically most favorable structures on both substrates and study their electronic properties. Our results indicate that for the first layer, similar structures are favorable for both substrates. For the second layer, we find two significantly different structures. Interestingly, graphene favors the one with less, while Ag favors the one with more electronic coupling. We explain this switch in stability as an effect of the different charge transfer on the two substrates.

8.
ACS Phys Chem Au ; 2(1): 38-46, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35098244

RESUMEN

Properties of inorganic-organic interfaces, such as their interface dipole, strongly depend on the structural arrangements of the organic molecules. A prime example is tetracyanoethylene (TCNE) on Cu(111), which shows two different phases with significantly different work functions. However, the thermodynamically preferred phase is not always the one that is best suited for a given application. Rather, it may be desirable to selectively grow a kinetically trapped structure. In this work, we employ density functional theory and transition state theory to discuss under which conditions such a kinetic trapping might be possible for the model system of TCNE on Cu. Specifically, we want to trap the molecules in the first layer in a flat-lying orientation. This requires temperatures that are sufficiently low to suppress the reorientation of the molecules, which is thermodynamically more favorable for high dosages, but still high enough to enable ordered growth through diffusion of molecules. On the basis of the temperature-dependent diffusion and reorientation rates, we propose a temperature range at which the reorientation can be successfully suppressed.

9.
Phys Chem Chem Phys ; 23(14): 8132-8180, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33875987

RESUMEN

The computational characterization of inorganic-organic hybrid interfaces is arguably one of the technically most challenging applications of density functional theory. Due to the fundamentally different electronic properties of the inorganic and the organic components of a hybrid interface, the proper choice of the electronic structure method, of the algorithms to solve these methods, and of the parameters that enter these algorithms is highly non-trivial. In fact, computational choices that work well for one of the components often perform poorly for the other. As a consequence, default settings for one materials class are typically inadequate for the hybrid system, which makes calculations employing such settings inefficient and sometimes even prone to erroneous results. To address this issue, we discuss how to choose appropriate atomistic representations for the system under investigation, we highlight the role of the exchange-correlation functional and the van der Waals correction employed in the calculation and we provide tips and tricks how to efficiently converge the self-consistent field cycle and to obtain accurate geometries. We particularly focus on potentially unexpected pitfalls and the errors they incur. As a summary, we provide a list of best practice rules for interface simulations that should especially serve as a useful starting point for less experienced users and newcomers to the field.

10.
ACS Nano ; 15(4): 6723-6734, 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33728893

RESUMEN

The fabrication of nanomaterials involves self-ordering processes of functional molecules on inorganic surfaces. To obtain specific molecular arrangements, a common strategy is to equip molecules with functional groups. However, focusing on the functional groups alone does not provide a comprehensive picture. Especially at interfaces, processes that govern self-ordering are complex and involve various physical and chemical effects, often leading to unexpected structures, as we showcase here on the example of a homologous series of quinones on Ag(111). Naively, one could expect that such quinones, which all bear the same functionalization, form similar motifs. In salient contrast, our joint theoretical and experimental study shows that profoundly different structures are formed. Using a machine-learning-based structure search algorithm, we find that this is due to a shift of the balance of three antagonizing driving forces: adsorbate-substrate interactions governing adsorption sites, adsorbate-adsorbate interactions favoring close packing, and steric hindrance inhibiting certain otherwise energetically beneficial molecular arrangements. The theoretical structures show excellent agreement with our experimental characterizations of the organic/inorganic interfaces, both for the unit cell sizes and the orientations of the molecules within. The nonintuitive interplay of similarly important interaction mechanisms will continue to be a challenging aspect for the design of functional interfaces. With a detailed examination of all driving forces, we are, however, still able to devise a design principle for self-assembly of functionalized molecules.

11.
J Chem Phys ; 153(10): 104701, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32933277

RESUMEN

Molecular adsorption at organic/metal interfaces depends on a range of mechanisms: covalent bonds, charge transfer, Pauli repulsion, and van der Waals (vdW) interactions shape the potential energy surface (PES), making it key to understanding organic/metal interfaces. Describing such interfaces with density functional theory requires carefully selecting the exchange correlation (XC) functional and vdW correction scheme. To explore the reproducibility of the PES with respect to the choice of method, we present a benchmark of common local, semi-local, and non-local XC functionals in combination with various vdW corrections. We benchmark these methods using perylene-tetracarboxylic dianhydride on Ag(111), one of the most frequently studied organic/metal interfaces. For each method, we determine the PES using a Gaussian process regression algorithm, which requires only about 50 density functional theory calculations as input. This allows a detailed analysis of the PESs' features, such as the positions and energies of minima and saddle points. Comparing the results from different combinations of XC functionals and vdW corrections enables us to identify trends and differences between the approaches. PESs for different computation methods are in qualitative agreement but also display significant quantitative differences. In particular, the lateral positions of adsorption geometries agree well with experiment, while adsorption heights, energies, and barriers show larger discrepancies.

12.
Nano Lett ; 17(7): 4453-4460, 2017 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-28640634

RESUMEN

Structure determination and prediction pose a major challenge to computational material science, demanding efficient global structure search techniques tailored to identify promising and relevant candidates. A major bottleneck is the fact that due to the many combinatorial possibilities, there are too many possible geometries to be sampled exhaustively. Here, an innovative computational approach to overcome this problem is presented that explores the potential energy landscape of commensurate organic/inorganic interfaces where the orientation and conformation of the molecules in the tightly packed layer is close to a favorable geometry adopted by isolated molecules on the surface. It is specifically designed to sample the energetically lowest lying structures, including the thermodynamic minimum, in order to survey the particularly rich and intricate polymorphism in such systems. The approach combines a systematic discretization of the configuration space, which leads to a huge reduction of the combinatorial possibilities with an efficient exploration of the potential energy surface inspired by the Basin-Hopping method. Interfacing the algorithm with first-principles calculations, the power and efficiency of this approach is demonstrated for the example of the organic molecule TCNE (tetracyanoethylene) on Au(111). For the pristine metal surface, the global minimum structure is found to be at variance with the geometry found by scanning tunneling microscopy. Rather, our results suggest the presence of surface adatoms or vacancies that are not imaged in the experiment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...