Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 34
1.
Front Neurol ; 14: 1276238, 2023.
Article En | MEDLINE | ID: mdl-38125836

Background: Epilepsy is one of the most common and disabling neurological disorders. It is highly prevalent in children with neurodevelopmental delay and syndromic diseases. However, epilepsy can also be the only disease-determining symptom. The exact molecular diagnosis is essential to determine prognosis, comorbidity, and probability of recurrence, and to inform therapeutic decisions. Methods and materials: Here, we describe a prospective cohort study of patients with epilepsy evaluated in seven diagnostic outpatient centers in Germany. Over a period of 2 months, 07/2022 through 08/2022, 304 patients (317 returned result) with seizure-related human phenotype ontology (HPO) were analyzed. Evaluated data included molecular results, phenotype (syndromic and non-syndromic), and sequencing methods. Results: Single exome sequencing (SE) was applied in half of all patients, followed by panel (P) testing (36%) and trio exome sequencing (TE) (14%). Overall, a pathogenic variant (PV) (ACMG cl. 4/5) was identified in 22%; furthermore, a significant number of patients (12%) carried a reported clinically meaningful variant of unknown significance (VUS). The average diagnostic yield in patients ≤ 12 y was higher compared to patients >12 y cf. Figure 2B vs. Figure 3B. This effect was more pronounced in cases, where TE was applied in patients ≤ 12 vs. >12 y [PV (PV + VUS): patients ≤ 12 y: 35% (47%), patients > 12 y: 20% (40%)]. The highest diagnostic yield was achieved by TE in syndromic patients within the age group ≤ 12 y (ACMG classes 4/5 40%). In addition, TE vs. SE had a tendency to result in less VUS in patients ≤ 12 y [SE: 19% (22/117) VUS; TE: 17% (6/36) VUS] but not in patients >12 y [SE: 19% (8/42) VUS; TE: 20% (2/10) VUS]. Finally, diagnostic findings in patients with syndromic vs. non-syndromic symptoms revealed a significant overlap of frequent causes of monogenic epilepsies, including SCN1A, CACNA1A, and SETD1B, confirming the heterogeneity of the associated conditions. Conclusion: In patients with seizures-regardless of the detailed phenotype-a monogenic cause can be frequently identified, often implying a possible change in therapeutic action (36.7% (37/109) of PV/VUS variants); this justifies early and broad application of genetic testing. Our data suggest that the diagnostic yield is highest in exome or trio-exome-based testing, resulting in a molecular diagnosis within 3 weeks, with profound implications for therapeutic strategies and for counseling families and patients regarding prognosis and recurrence risk.

4.
Mol Biol Rep ; 46(4): 4507-4516, 2019 Aug.
Article En | MEDLINE | ID: mdl-31270756

Inherited white matter disorders of the central nervous system frequently are degenerative and progressive clinical entities. They are classified into myelin disorders, including hypomyelination, dysmyelination, demyelination, and myelin vacuolization, but also astrocytopathies, leuko-axonopathies, microgliopathies, and leuko-vasculopathies. Hypomyelinating leukodystrophy is the main feature of Pelizaeus-Merzbacher disease (PMD) and Pelizaeus-Merzbacher-like disease (PMLD1). PMD- and PMLD1-affected patients display comparable neurological symptoms, including psychomotor developmental delay, spasticity, nystagmus, impairment of cognitive skills, sensorineural hearing loss, and different ophthalmological disabilities. While clinical features overlap, PMD and PMLD1 can be distinguished on the molecular genetic level. PMD is caused by mutations in the gene encoding for the proteolipid protein 1 (PLP1), whereas PMLD1 is associated with mutations in the gene encoding for the gap junction protein gamma 2 (GJC2). Here we present novel compound-heterozygous mutations in the GJC2 gene identified in two, unrelated infantile patients affected with PMLD1. The heterozygous frameshift mutations c.392dupC, p.H132Afs*6 and c.989delC, p.P330Rfs*141 were found in the first patient. The heterozygous nonsense variant c.291C>G, p.Y97*, as well as the heterozygous missense variant c.716T>C, p.V239A were detected in the second patient. All four variants were predicted to be damaging for structure and/or function of the GJC2 protein. Combinations of these genetic variants likely are pathogenic and resulted in the PMLD1-phenotype in the investigated children. In conclusion, our clinical and molecular findings confirmed the genotype-phenotype relationship between mutations in the GJC2 and PMLD1. The novel mutations of GJC2 described herein will help to further understand the pathogenic mechanism underlying PMLD1.


Connexins/genetics , Hereditary Central Nervous System Demyelinating Diseases/genetics , Adult , Child , Child, Preschool , Connexins/metabolism , Female , Genetic Association Studies , Germany , Hereditary Central Nervous System Demyelinating Diseases/metabolism , Heterozygote , Humans , Infant , Male , Mutation/genetics , Mutation, Missense/genetics , Pelizaeus-Merzbacher Disease/genetics
6.
Brain ; 142(6): 1561-1572, 2019 06 01.
Article En | MEDLINE | ID: mdl-31135052

The endoplasmic reticulum enzyme fatty acid 2-hydroxylase (FA2H) plays a major role in the formation of 2-hydroxy glycosphingolipids, main components of myelin. FA2H deficiency in mice leads to severe central demyelination and axon loss. In humans it has been associated with phenotypes from the neurodegeneration with brain iron accumulation (fatty acid hydroxylase-associated neurodegeneration, FAHN), hereditary spastic paraplegia (HSP type SPG35) and leukodystrophy (leukodystrophy with spasticity and dystonia) spectrum. We performed an in-depth clinical and retrospective neurophysiological and imaging study in a cohort of 19 cases with biallelic FA2H mutations. FAHN/SPG35 manifests with early childhood onset predominantly lower limb spastic tetraparesis and truncal instability, dysarthria, dysphagia, cerebellar ataxia, and cognitive deficits, often accompanied by exotropia and movement disorders. The disease is rapidly progressive with loss of ambulation after a median of 7 years after disease onset and demonstrates little interindividual variability. The hair of FAHN/SPG35 patients shows a bristle-like appearance; scanning electron microscopy of patient hair shafts reveals deformities (longitudinal grooves) as well as plaque-like adhesions to the hair, likely caused by an abnormal sebum composition also described in a mouse model of FA2H deficiency. Characteristic imaging features of FAHN/SPG35 can be summarized by the 'WHAT' acronym: white matter changes, hypointensity of the globus pallidus, ponto-cerebellar atrophy, and thin corpus callosum. At least three of four imaging features are present in 85% of FA2H mutation carriers. Here, we report the first systematic, large cohort study in FAHN/SPG35 and determine the phenotypic spectrum, define the disease course and identify clinical and imaging biomarkers.


Heredodegenerative Disorders, Nervous System/genetics , Phenotype , Spastic Paraplegia, Hereditary/genetics , Child , Cohort Studies , Demyelinating Diseases/genetics , Female , Humans , Male , Mixed Function Oxygenases/genetics , Mutation/genetics , Pedigree , Retrospective Studies , Spastic Paraplegia, Hereditary/classification
7.
Neuromolecular Med ; 21(2): 182-191, 2019 06.
Article En | MEDLINE | ID: mdl-30955194

Hereditary sensory and autonomic neuropathy type 1 (HSAN1) is a rare, autosomal dominantly inherited, slowly progressive and length-dependent axonal peripheral neuropathy. HSAN1 is associated with several mutations in serine-palmitoyltransferase (SPT), the first enzyme in the de novo sphingolipid biosynthetic pathway. HSAN1 mutations alter the substrate specificity of SPT, which leads to the formation of 1-deoxysphingolipids, an atypical and neurotoxic subclass of sphingolipids. This study describes the clinical and neurophysiological phenotype of a German family with a novel SPTCL2 mutation (c.529A > G; N177D) associated with HSAN1 and the biochemical characterization of this mutation.) The mutaion was identified in five family members that segregated with the diesease. Patients were characterized genetically and clinically for neurophysiological function. Their plasma sphingolipid profiles were analyzed by LC-MS. The biochemical properties of the mutation were characterized in a cell-based activity assay. Affected family members showed elevated 1-deoxysphingolipid plasma levels. HEK293 cells expressing the N177D SPTLC2 mutant showed increased de novo 1-deoxysphingolipid formation, but also displayed elevated canonical SPT activity and increased C20 sphingoid base production. This study identifies the SPTLC2 N177D variant as a novel disease-causing mutation with increased 1-deoxySL formation and its association with a typical HSAN1 phenotype.


Hereditary Sensory and Autonomic Neuropathies/genetics , Mutation, Missense , Point Mutation , Serine C-Palmitoyltransferase/genetics , Alanine/metabolism , Amino Acid Sequence , Consensus Sequence , Female , HEK293 Cells , High-Throughput Nucleotide Sequencing , Humans , Male , Models, Molecular , Pedigree , Protein Conformation , Retrospective Studies , Sequence Alignment , Sequence Homology, Amino Acid , Serine C-Palmitoyltransferase/deficiency , Serine C-Palmitoyltransferase/physiology , Sphingolipids/biosynthesis , Sphingolipids/blood
10.
Front Neurol ; 9: 383, 2018.
Article En | MEDLINE | ID: mdl-29887830

Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disorder characterized by the presence of renal cysts and specific extrarenal abnormalities. ADPKD is caused by mutations in either PKD1 or PKD2 genes that encode for integral membrane proteins Polycystin-1 (PC1) and Polycystin-2 (PC2), respectively. Extrarenal involvement includes noncystic manifestations such as dilatation of the aortic root, artery dissection and intracranial aneurysms. Cerebral cavernous malformation (CCM) is a rare vascular malformation disorder characterized by closely clustered and irregularly dilated capillaries that can be asymptomatic or cause variable neurological manifestations, such as seizures, non-specific headaches, progressive or transient focal neurologic deficits, and cerebral hemorrhages. Familial CCM is typically associated with mutations in KRIT1 (CCM1), CCM2, and PDCD10 (CCM3). The co-occurrence of ADPKD and CCM has been previously described in a single patient, although genetic analysis was not performed in this study. We report here a family with ADPKD associated with CCM in two sisters. Direct sequencing of the index patient revealed a single novel heterozygous frameshift mutation in PKD1, and lack of mutations in genes usually related to CCM. This suggests that CCM represents an additional phenotype of ADPKD.

11.
Horm Res Paediatr ; 89(6): 423-433, 2018.
Article En | MEDLINE | ID: mdl-29909407

Cushing syndrome (CS) is a rare disease in children, frequently associated with subtle or periodic symptoms that may delay its diagnosis. Weight gain and growth failure, the hallmarks of hypercortisolism in pediatrics, may be inconsistent, especially in ACTH-independent forms of CS. Primary pigmented nodular adrenocortical disease (PPNAD) is the rarest form of ACTH-independent CS, and can be associated with endocrine and nonendocrine tumors, forming the Carney complex (CNC). Recently, phenotype/genotype correlations have been described with particular forms of CNC where PPNAD is isolated or associated only with skin lesions. We present four familial series of CS due to isolated PPNAD, and compare them to available data from the literature. We discuss the clinical and molecular findings, and underline challenges in diagnosing PPNAD in childhood.


Adrenal Cortex Diseases , Cushing Syndrome , Adolescent , Adrenal Cortex Diseases/diagnosis , Adrenal Cortex Diseases/genetics , Adrenal Cortex Diseases/pathology , Adult , Child , Child, Preschool , Cushing Syndrome/diagnosis , Cushing Syndrome/genetics , Cushing Syndrome/pathology , Female , Humans , Male , Middle Aged
13.
J Neurol ; 265(2): 388-393, 2018 Feb.
Article En | MEDLINE | ID: mdl-29260356

Cerebrotendinous xanthomatosis (CTX, MIM 213700) is a rare autosomal recessive lipid storage disorder caused by CYP27A1 mutations. Treatment with chenodeoxycholic acid (CDCA) may slow the progression of the disease and reverse some symptoms in a proportion of patients. In a non-consanguineous Caucasian family, two siblings with CTX were evaluated before treatment and prospectively followed-up every 6 months after starting CDCA therapy, using systematic clinical examination, neuropsychological tests, laboratory tests, electroencephalography (EEG) and brain MRI, diffusion tensor imaging (DTI) and tractography. A 30-year-old patient and her 27-year-old brother were referred for progressive spastic paraparesis. Both had epilepsy, learning difficulties, chronic diarrhoea and juvenile-onset cataracts. CTX was diagnosed by increased cholestanol levels and compound heterozygosity for CYP27A1 mutations. Therapy with CDCA led to resolution of chronic diarrhoea, normalisation of serum cholestanol and EEG, and a progressive improvement in gait, cognition and seizure control. Before treatment, conventional brain MRI showed no CTX-related abnormalities for the proband and no cerebellar abnormalities for the brother, while DTI showed reduced fractional anisotropy (FA) and tract-density in the cerebellum and widespread cerebral reductions of FA in both patients, compared to a group of 35 healthy controls. Repeated DTI after starting therapy showed progressive increases of cerebellar tract density and of cerebral FA. In patients with CTX, therapy with CDCA may lead to significant clinical improvement, with normalisation of biochemical and electrophysiological biomarkers. DTI and tractography may detect changes when the conventional MRI is unremarkable and may provide potential neuroimaging biomarkers for monitoring treatment response in CTX, while the conventional MRI remains unchanged.


Brain/diagnostic imaging , Chenodeoxycholic Acid/therapeutic use , Diffusion Tensor Imaging , Gastrointestinal Agents/therapeutic use , Xanthomatosis, Cerebrotendinous/diagnostic imaging , Xanthomatosis, Cerebrotendinous/drug therapy , Adult , Anisotropy , Brain/drug effects , Chenodeoxycholic Acid/pharmacology , Cholestanetriol 26-Monooxygenase/genetics , Female , Gastrointestinal Agents/pharmacology , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Mutation/genetics , Prospective Studies , Xanthomatosis, Cerebrotendinous/genetics
14.
Ann Neurol ; 82(4): 562-577, 2017 Oct.
Article En | MEDLINE | ID: mdl-28892560

OBJECTIVE: Autosomal recessive primary microcephaly (MCPH) is a rare condition characterized by a reduced cerebral cortex accompanied with intellectual disability. Mutations in 17 genes have been shown to cause this phenotype. Recently, mutations in CIT, encoding CRIK (citron rho-interacting kinase)-a component of the central spindle matrix-were added. We aimed at identifying novel MCPH-associated genes and exploring their functional role in pathogenesis. METHODS: Linkage analysis and whole exome sequencing were performed in consanguineous and nonconsanguineous MCPH families to identify disease-causing variants. Functional consequences were investigated by RNA studies and on the cellular level using immunofluorescence and microscopy. RESULTS: We identified homozygous mutations in KIF14 (NM_014875.2;c.263T>A;pLeu88*, c.2480_2482delTTG; p.Val827del, and c.4071G>A;p.Gln1357=) as the likely cause in 3 MCPH families. Furthermore, in a patient presenting with a severe form of primary microcephaly and short stature, we identified compound heterozygous missense mutations in KIF14 (NM_014875.2;c.2545C>G;p.His849Asp and c.3662G>T;p.Gly1221Val). Three of the 5 identified mutations impaired splicing, and 2 resulted in a truncated protein. Intriguingly, Kif14 knockout mice also showed primary microcephaly. Human kinesin-like protein KIF14, a microtubule motor protein, localizes at the midbody to finalize cytokinesis by interacting with CRIK. We found impaired localization of both KIF14 and CRIK at the midbody in patient-derived fibroblasts. Furthermore, we observed a large number of binucleated and apoptotic cells-signs of failed cytokinesis that we also observed in experimentally KIF14-depleted cells. INTERPRETATION: Our data corroborate the role of an impaired cytokinesis in the etiology of primary and syndromic microcephaly, as has been proposed by recent findings on CIT mutations. Ann Neurol 2017;82:562-577.


Cytokinesis/genetics , Gene Expression Regulation/genetics , Kinesins/genetics , Microcephaly/genetics , Mutation/genetics , Oncogene Proteins/genetics , Caspase 7/metabolism , Cell Movement/genetics , Cells, Cultured , Child , Child, Preschool , Family Health , Female , Fibroblasts/physiology , Genome-Wide Association Study , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Male , Microcephaly/diagnostic imaging , Microcephaly/pathology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Tubulin/metabolism
15.
J Neurochem ; 143(5): 507-522, 2017 12.
Article En | MEDLINE | ID: mdl-28902413

Hereditary neuropathies comprise a wide variety of chronic diseases associated to more than 80 genes identified to date. We herein examined 612 index patients with either a Charcot-Marie-Tooth phenotype, hereditary sensory neuropathy, familial amyloid neuropathy, or small fiber neuropathy using a customized multigene panel based on the next generation sequencing technique. In 121 cases (19.8%), we identified at least one putative pathogenic mutation. Of these, 54.4% showed an autosomal dominant, 33.9% an autosomal recessive, and 11.6% an X-linked inheritance. The most frequently affected genes were PMP22 (16.4%), GJB1 (10.7%), MPZ, and SH3TC2 (both 9.9%), and MFN2 (8.3%). We further detected likely or known pathogenic variants in HINT1, HSPB1, NEFL, PRX, IGHMBP2, NDRG1, TTR, EGR2, FIG4, GDAP1, LMNA, LRSAM1, POLG, TRPV4, AARS, BIC2, DHTKD1, FGD4, HK1, INF2, KIF5A, PDK3, REEP1, SBF1, SBF2, SCN9A, and SPTLC2 with a declining frequency. Thirty-four novel variants were considered likely pathogenic not having previously been described in association with any disorder in the literature. In one patient, two homozygous mutations in HK1 were detected in the multigene panel, but not by whole exome sequencing. A novel missense mutation in KIF5A was considered pathogenic because of the highly compatible phenotype. In one patient, the plasma sphingolipid profile could functionally prove the pathogenicity of a mutation in SPTLC2. One pathogenic mutation in MPZ was identified after being previously missed by Sanger sequencing. We conclude that panel based next generation sequencing is a useful, time- and cost-effective approach to assist clinicians in identifying the correct diagnosis and enable causative treatment considerations.


Genetic Predisposition to Disease , Hereditary Sensory and Motor Neuropathy/genetics , Mutation/genetics , Rare Diseases/genetics , Charcot-Marie-Tooth Disease/genetics , Female , HSP27 Heat-Shock Proteins/genetics , Heat-Shock Proteins , Hereditary Sensory and Motor Neuropathy/diagnosis , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Molecular Chaperones , Phenotype
16.
Brain ; 140(5): 1316-1336, 2017 May 01.
Article En | MEDLINE | ID: mdl-28379373

Mutations in SCN2A, a gene encoding the voltage-gated sodium channel Nav1.2, have been associated with a spectrum of epilepsies and neurodevelopmental disorders. Here, we report the phenotypes of 71 patients and review 130 previously reported patients. We found that (i) encephalopathies with infantile/childhood onset epilepsies (≥3 months of age) occur almost as often as those with an early infantile onset (<3 months), and are thus more frequent than previously reported; (ii) distinct phenotypes can be seen within the late onset group, including myoclonic-atonic epilepsy (two patients), Lennox-Gastaut not emerging from West syndrome (two patients), and focal epilepsies with an electrical status epilepticus during slow sleep-like EEG pattern (six patients); and (iii) West syndrome constitutes a common phenotype with a major recurring mutation (p.Arg853Gln: two new and four previously reported children). Other known phenotypes include Ohtahara syndrome, epilepsy of infancy with migrating focal seizures, and intellectual disability or autism without epilepsy. To assess the response to antiepileptic therapy, we retrospectively reviewed the treatment regimen and the course of the epilepsy in 66 patients for which well-documented medical information was available. We find that the use of sodium channel blockers was often associated with clinically relevant seizure reduction or seizure freedom in children with early infantile epilepsies (<3 months), whereas other antiepileptic drugs were less effective. In contrast, sodium channel blockers were rarely effective in epilepsies with later onset (≥3 months) and sometimes induced seizure worsening. Regarding the genetic findings, truncating mutations were exclusively seen in patients with late onset epilepsies and lack of response to sodium channel blockers. Functional characterization of four selected missense mutations using whole cell patch-clamping in tsA201 cells-together with data from the literature-suggest that mutations associated with early infantile epilepsy result in increased sodium channel activity with gain-of-function, characterized by slowing of fast inactivation, acceleration of its recovery or increased persistent sodium current. Further, a good response to sodium channel blockers clinically was found to be associated with a relatively small gain-of-function. In contrast, mutations in patients with late-onset forms and an insufficient response to sodium channel blockers were associated with loss-of-function effects, including a depolarizing shift of voltage-dependent activation or a hyperpolarizing shift of channel availability (steady-state inactivation). Our clinical and experimental data suggest a correlation between age at disease onset, response to sodium channel blockers and the functional properties of mutations in children with SCN2A-related epilepsy.


Epilepsy/drug therapy , Epilepsy/genetics , Epilepsy/physiopathology , NAV1.2 Voltage-Gated Sodium Channel/genetics , NAV1.2 Voltage-Gated Sodium Channel/physiology , Neurodevelopmental Disorders/genetics , Sodium Channel Blockers/therapeutic use , Adolescent , Adult , Age of Onset , Child , Child, Preschool , Denmark/epidemiology , Epilepsy/epidemiology , Female , Humans , Infant , Male , Mutation , Phenotype , Young Adult
17.
Mol Syndromol ; 7(4): 182-188, 2016 Sep.
Article En | MEDLINE | ID: mdl-27781028

Mutations in SCN2A have been associated with benign familial neonatal-infantile seizures (BFNIS) as well as infantile-onset epileptic encephalopathy, such as Ohtahara syndrome (OS). We describe a family with 3 affected individuals carrying the novel SCN2A missense variant c.1147C>G, p.Q383E affecting a residue proximal to the highly conserved selectivity filter in the P-loop of the voltage-gated sodium channel (Nav1.2). All 3 individuals presented with seizures in early infancy. However, there were striking differences in the spectrum of clinical presentations, ranging from BFNIS to OS. A change of ion selectivity of Nav1.2 is considered to be the potential pathomechanism underlying this Nav1.2 channel dysfunction. The observation of benign and severe phenotypes due to an identical mutation within one family contradicts the hypothesis of different modes of inheritance as a mandatory feature discriminating BFNIS from SCN2A encephalopathy.

18.
Am J Hum Genet ; 99(4): 802-816, 2016 Oct 06.
Article En | MEDLINE | ID: mdl-27616483

N-methyl-D-aspartate receptors (NMDARs) are ligand-gated cation channels that mediate excitatory synaptic transmission. Genetic mutations in multiple NMDAR subunits cause various childhood epilepsy syndromes. Here, we report a de novo recurrent heterozygous missense mutation-c.1999G>A (p.Val667Ile)-in a NMDAR gene previously unrecognized to harbor disease-causing mutations, GRIN2D, identified by exome and candidate panel sequencing in two unrelated children with epileptic encephalopathy. The resulting GluN2D p.Val667Ile exchange occurs in the M3 transmembrane domain involved in channel gating. This gain-of-function mutation increases glutamate and glycine potency by 2-fold, increases channel open probability by 6-fold, and reduces receptor sensitivity to endogenous negative modulators such as extracellular protons. Moreover, this mutation prolongs the deactivation time course after glutamate removal, which controls the synaptic time course. Transfection of cultured neurons with human GRIN2D cDNA harboring c.1999G>A leads to dendritic swelling and neuronal cell death, suggestive of excitotoxicity mediated by NMDAR over-activation. Because both individuals' seizures had proven refractory to conventional antiepileptic medications, the sensitivity of mutant NMDARs to FDA-approved NMDAR antagonists was evaluated. Based on these results, oral memantine was administered to both children, with resulting mild to moderate improvement in seizure burden and development. The older proband subsequently developed refractory status epilepticus, with dramatic electroclinical improvement upon treatment with ketamine and magnesium. Overall, these results suggest that NMDAR antagonists can be useful as adjuvant epilepsy therapy in individuals with GRIN2D gain-of-function mutations. This work further demonstrates the value of functionally evaluating a mutation, enabling mechanistic understanding and therapeutic modeling to realize precision medicine for epilepsy.


Genes, Dominant/genetics , Mutation , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Spasms, Infantile/drug therapy , Spasms, Infantile/genetics , Amino Acid Sequence , Base Sequence , Cell Death , Child , DNA Mutational Analysis , Dendrites/pathology , Electroencephalography , Exome/genetics , Female , Glutamic Acid/metabolism , Humans , Infant , Infant, Newborn , Ketamine/therapeutic use , Magnesium/therapeutic use , Memantine/administration & dosage , Memantine/therapeutic use , Models, Molecular , Precision Medicine , Receptors, N-Methyl-D-Aspartate/chemistry , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Seizures/drug therapy , Seizures/genetics , Seizures/metabolism , Spasms, Infantile/metabolism
19.
Am J Med Genet A ; 170(12): 3319-3322, 2016 12.
Article En | MEDLINE | ID: mdl-27626616

In recent years, many mutations have been identified that affect the biosynthesis of the glycosylphosphatidylinositol anchor, a biomolecule that attaches surface molecules to cell membranes. Here, we present two second-degree cousins with unexplained patterns of seizures. Next-generation sequencing identified the homozygous c.460A>G; p.(R154G) PIGW mutation in both patients. Transfection of the mutated allele into Pigw-defective CHO cells indicated impaired enzymatic activity of the mutated PIGW product. Alkaline phosphatase did not exceed the upper normal range and flow cytometry of CD16, CD24, and CD66c on granulocytes showed subtle changes of the cellular expression of the glycosylphosphatidylinositol-anchored proteins. The patients' phenotype is therefore remarkably different from the phenotype of the only other described individual with PIGW mutations. Patients might therefore be missed when relying on traditional flow cytometry of glycosylphosphatidylinositol-anchored proteins only and we suggest that glycosylphosphatidylinositol-deficiency should be considered even with patients not showing the typical clinical phenotypes. © 2016 Wiley Periodicals, Inc.


Genetic Association Studies , Glycosylphosphatidylinositols/deficiency , Mannosyltransferases/genetics , Mutation , Phenotype , Consanguinity , DNA Mutational Analysis , Electroencephalography , Female , Glycosylphosphatidylinositols/genetics , Homozygote , Humans , Infant , Male , Physical Examination , Seizures
20.
J Inherit Metab Dis ; 39(6): 849-857, 2016 11.
Article En | MEDLINE | ID: mdl-27473128

Vesicular protein sorting-associated proteins (VPS, including VPS11) are indispensable in the endocytic network, in particular the endosome-lysosome biogenesis. Exome sequencing revealed the homozygous variant p.Leu387_ Gly395del in the VPS11 gene in two siblings. On immunoblotting, the mutant VPS11 protein showed a distinctly reduced immunostaining intensity. The children presented with primary and severe developmental delay associated with myoclonic seizures, spastic tetraplegia, trunk and neck hypotonia, blindness, hearing loss, and microcephaly. Neuro-imaging showed severe hypomyelination affecting cerebral and cerebellar white matter and corpus callosum, in the absence of a peripheral neuropathy. Electron microscopy of a skin biopsy revealed clusters of membranous cytoplasmic bodies in dermal unmyelinated nerve axons, and numbers of vacuoles in eccrine sweat glands, similar to what is seen in a classic lysosomal storage disease (LSD). Bone marrow cytology showed a high number of storage macrophages with a micro-vacuolated cytoplasm. Biochemically, changes in urinary glycosphingolipids were reminiscent of those in prosaposin deficiency (another LSD). The clinical and neuro-imaged features in our patients were almost identical to those in some recently reported patients with another variant in the VPS11 gene, p.Cys846Gly; underlining the presumed pathogenic potential of VPS11 defects. A new feature was the morphological evidence for lysosomal storage in VPS11 deficiency: This newly characterised disease can be viewed as belonging to the complex field of LSD.


Demyelinating Diseases/genetics , Lysosomes/genetics , Vesicular Transport Proteins/deficiency , Vesicular Transport Proteins/genetics , Adolescent , Base Sequence , Cataract/congenital , Cataract/genetics , Child , Endosomes/genetics , Female , Hereditary Central Nervous System Demyelinating Diseases/genetics , Humans , Lysosomal Storage Diseases/genetics , Male , Mutation/genetics
...