Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 465: 133223, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38113742

RESUMEN

Tire materials (TMs) present a notable hazard due to their potential to release harmful chemicals and microplastics into the environment. They can infiltrate wastewater treatment plants, where their effects remain inadequately understood, raising concerns regarding their influence on treatment procedures. Thus, this study investigated the impact of TMs in wastewater (10, 25, 50 mg/L) on wastewater treatment efficiency, biomass morphology, and microbial composition in aerobic granular sludge (AGS) reactors. TM dosage negatively correlated with nitrification and denitrification efficiencies, reducing overall nitrogen removal, but did not affect the efficiency of chemical-oxygen-demand removal. The presence of TMs increased the diameter of the granules due to TM incorporation into the biomass. The most frequently leached additives from TMs were N-(1,3-dimethylbutyl)-N'-phenyl-1,4-phenylenediamine, benzothiazole (BTH), and 2-hydroxybenzothiazole. In the treated wastewater, only BTH and aniline were detected in higher concentrations, which indicates that tire additives were biodegraded by AGS. The microbial community within the AGS adapted to TMs and their chemicals, highlighting the potential for efficient degradation of tire additives by bacteria belonging to the genera Rubrivivax, Ferruginibacter, and Xanthomonas. Additionally, our research underscores AGS's ability to incorporate TMs into biomass and effectively biodegrade tire additives, offering a promising solution for addressing environmental concerns related to TMs.


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Aguas del Alcantarillado/química , Compuestos de Nitrógeno , Eliminación de Residuos Líquidos/métodos , Biomasa , Plásticos , Nitrógeno/análisis , Reactores Biológicos/microbiología , Aerobiosis
2.
Microplast nanoplast ; 3(1): 24, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37920865

RESUMEN

Plastics pollution research attracts scientists from diverse disciplines. Many Early Career Researchers (ECRs) are drawn to this field to investigate and subsequently mitigate the negative impacts of plastics. Solving the multi-faceted plastic problem will always require breakthroughs across all levels of science disciplinarity, which supports interdisciplinary discoveries and underpins transdisciplinary solutions. In this context, ECRs have the opportunity to work across scientific discipline boundaries and connect with different stakeholders, including industry, policymakers and the public. To fully realize their potential, ECRs need to develop strong communication and project management skills to be able to effectively interface with academic peers and non-academic stakeholders. At the end of their formal education, many ECRs will choose to leave academia and pursue a career in private industry, government, research institutes or non-governmental organizations (NGOs). Here we give perspectives on how ECRs can develop the skills to tackle the challenges and opportunities of this transdisciplinary research field and how these skills can be transferred to different working sectors. We also explore how advisors can support an ECRs' growth through inclusive leadership and coaching. We further consider the roles each party may play in developing ECRs into mature scientists by helping them build a strong foundation, while also critically assessing problems in an interdisciplinary and transdisciplinary context. We hope these concepts can be useful in fostering the development of the next generation of plastics pollution researchers so they can address this global challenge more effectively.

3.
Water Res ; 242: 120235, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37348424

RESUMEN

Phthalic acid esters (phthalates) are an important group of additives (plasticizers) to ensure the flexibility and stability especially of polyvinyl chloride (PVC) and to enable its processing. However, phthalates like di(2-ethylhexyl) phthalate (DEHP) are harmful for aquatic organisms due to their endocrine disrupting effects and toxicity. For the assessment of exposure concentrations, thorough understanding of leaching kinetics of phthalates from PVC (micro-) plastics into aqueous environments is necessary. This study investigates how environmental factors influence the leaching of phthalates from PVC microplastics into aquatic systems. The leaching of phthalates from PVC microplastics into aqueous media is limited by aqueous boundary layer diffusion (ABLD) and thus, process-specific parameters can be affected by environmental factors such as salinity and the flow conditions. We conducted batch leaching experiments to assess the influence of salinity and flow conditions (turbulence) on the leaching of DEHP from PVC microplastics into aqueous media. DEHP is salted out with increasing salinity of the solution and a salting-out coefficient for DEHP of 0.46 was determined. The partitioning coefficient of DEHP between PVC and water KPVC/W increased with increasing salinity from 108.52 L kg-1 in a 1 mM KCl solution to 108.75 L kg-1 in artificial seawater thereby slowing down leaching. Increasing flow velocities led to higher leaching rates because the ABL thickness decreased from 1315 µm at 0 rpm shaking speed (no-flow conditions) to 38.4 µm at 125 rpm (turbulent conditions). Compared to salinity, turbulence had a more pronounced effect on leaching. Increasing the flow velocity led to a 35-fold decrease in the leaching rate, while increasing salinity led to a 2-fold increase. By calculating specific leaching times, that is, leaching half-lives (t1/2), time frames for leaching in different aquatic systems such as rivers and the ocean were determined. Given ABLD-limited leaching, DEHP is leached faster from PVC microplastics in rivers (t1/2 > 49 years) than in the ocean (t1/2 > 398 years). In both systems, PVC microplastics are a long-term source of phthalates.


Asunto(s)
Dietilhexil Ftalato , Ácidos Ftálicos , Plásticos , Dietilhexil Ftalato/toxicidad , Microplásticos , Cloruro de Polivinilo , Plastificantes/análisis , Plastificantes/toxicidad , Agua
4.
Environ Pollut ; 325: 121417, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36921655

RESUMEN

Remediation of residually contaminated soils remains a widespread problem. Biochar can immobilize polycyclic aromatic hydrocarbons (PAH). However, studies on its ability to immobilize PAH and N, S, and O substituted PAH (hetero-PAH) in real soils, and benchmarking with commercial activated carbon are missing. Here, we compared the ability of pristine biochar (BC), steam-activated biochar (SABC), and commercial activated carbon (AC) to immobilize PAH and hetero-PAH. The three carbons were tested on soils from four different contaminated sites in Austria. Different amendment rates (w/w) of the carbons were investigated (BC: 1.0, 2.5, and 5%; SABC: 0.5, 1.0, and 2.0%; AC: 1%) in batch experiments to cover meaningful ranges in relation to their performance. SABC performed better than AC, removing at least 80% PAH with the lowest application rate of 0.5%, and achieving a complete removal at an application rate of 1.0%. BC performed slightly worse but still acceptable in residually contaminated soils (40 and 100% removal at 1 and 5% amendment, respectively). The ability of BC and SABC to immobilize PAH decreased as the PAH-molar volume increased. PAH with three or more rings were preferentially removed by AC compared to SABC or BC. This can be explained by the difference in pore size distribution of the carbons which could limit the accessibility of PAH and hetero-PAH to reach sorption sites for π- π electron donor-acceptor interactions, which drive PAH and hetero-PAH sorption to carbons. Column percolation tests confirmed the results obtained in batch tests, indicating, that decisions for soil remediation can be derived from simpler batch experiments. In soil samples with 1% BC, a reduction of over 90% in the total concentration of PAH in the leached water was observed. Overall, BC and SABC were demonstrated to be valid substitutes for AC for stabilizing residually contaminated soils.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Hidrocarburos Policíclicos Aromáticos/análisis , Carbón Orgánico , Benchmarking , Contaminantes del Suelo/análisis , Suelo
5.
Environ Sci Technol ; 57(1): 168-178, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36576319

RESUMEN

Tire wear particle (TWP)-derived compounds may be of high concern to consumers when released in the root zone of edible plants. We exposed lettuce plants to the TWP-derived compounds diphenylguanidine (DPG), hexamethoxymethylmelamine (HMMM), benzothiazole (BTZ), N-phenyl-N'-(1,3-dimethylbutyl)-p-phenylenediamine (6PPD), and its quinone transformation product (6PPD-q) at concentrations of 1 mg L-1 in hydroponic solutions over 14 days to analyze if they are taken up and metabolized by the plants. Assuming that TWP may be a long-term source of TWP-derived compounds to plants, we further investigated the effect of leaching from TWP on the concentration of leachate compounds in lettuce leaves by adding constantly leaching TWP to the hydroponic solutions. Concentrations in leaves, roots, and nutrient solution were quantified by triple quadrupole mass spectrometry, and metabolites in the leaves were identified by Orbitrap high resolution mass spectrometry. This study demonstrates that TWP-derived compounds are readily taken up by lettuce with measured maximum leaf concentrations between ∼0.75 (6PPD) and 20 µg g-1 (HMMM). Although these compounds were metabolized in the plant, we identified several transformation products, most of which proved to be more stable in the lettuce leaves than the parent compounds. Furthermore, continuous leaching from TWP led to a resupply and replenishment of the metabolized compounds in the lettuce leaves. The stability of metabolized TWP-derived compounds with largely unknown toxicities is particularly concerning and is an important new aspect for the impact assessment of TWP in the environment.


Asunto(s)
Benzoquinonas , Exposición a Riesgos Ambientales , Lactuca , Fenilendiaminas , Transporte Biológico , Lactuca/química , Lactuca/metabolismo , Espectrometría de Masas , Goma/química , Fenilendiaminas/análisis , Fenilendiaminas/metabolismo , Benzoquinonas/análisis , Benzoquinonas/metabolismo
6.
Environ Sci Technol ; 56(23): 16873-16884, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36394826

RESUMEN

The release of fragments from plastic products, that is, secondary microplastics, is a major concern in the context of the global plastic pollution. Currently available (thermoplastic) polyurethanes [(T)PU] are not biodegradable and therefore should be recycled. However, the ester bond in (T)PUs might be sufficiently hydrolysable to enable at least partial biodegradation of polyurethane particles. Here, we investigated biodegradation in compost of different types of (T)PU to gain insights into their fragmentation and biodegradation mechanisms. The studied (T)PUs varied regarding the chemistry of their polymer backbone (aromatic/aliphatic), hard phase content, cross-linking degree, and presence of a hydrolysis-stabilizing additive. We developed and validated an efficient and non-destructive polymer particle extraction process for partially biodegraded (T)PUs based on ultrasonication and density separation. Our results showed that biodegradation rates and extents decreased with increasing cross-linking density and hard-segment content. We found that the presence of a hydrolysis stabilizer reduced (T)PU fragmentation while not affecting the conversion of (T)PU carbon into CO2. We propose a biodegradation mechanism for (T)PUs that includes both mother particle shrinkage by surface erosion and fragmentation. The presented results help to understand structure-degradation relationships of (T)PUs and support recycling strategies.


Asunto(s)
Plásticos , Poliuretanos , Humanos , Microplásticos , Polímeros , Biodegradación Ambiental , Supuración
7.
Environ Sci Technol ; 56(20): 14507-14516, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36154015

RESUMEN

Phthalic acid esters (phthalates) have been detected everywhere in the environment, but data on leaching kinetics and the governing mass transfer process into aqueous systems remain largely unknown. In this study, we experimentally determined time-dependent leaching curves for three phthalates di(2-ethylhexyl) phthalate, di(2-ethylhexyl) terephthalate, and diisononyl phthalate from polyvinyl chloride (PVC) microplastics and thereby enabled a better understanding of their leaching kinetics. This is essential for exposure assessment and to predict microplastic-bound environmental concentrations of phthalates. Leaching curves were analyzed using models for intraparticle diffusion (IPD) and aqueous boundary layer diffusion (ABLD). We show that ABLD is the governing diffusion process for the continuous leaching of phthalates because phthalates are very hydrophobic (partitioning coefficients between PVC and water log KPVC/W were higher than 8.6), slowing down the diffusion through the ABL. Also, the diffusion coefficient in the polymer DPVC is relatively high (∼8 × 10-14 m2 s-1) and thus enhances IPD. Desorption half-lives of the studied PVC microplastics are greater than 500 years but can be strongly influenced by environmental factors. By combining leaching experiments and modeling, our results reveal that PVC microplastics are a long-term source of phthalates in the environment.


Asunto(s)
Microplásticos , Ácidos Ftálicos , Ésteres , Plásticos , Polímeros , Cloruro de Polivinilo/química , Agua
8.
Sci Total Environ ; 843: 157122, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35787901

RESUMEN

In Europe alone, >200 million m3 of river sediments are dredged each year, part of which are contaminated to such an extent that they have to be landfilled. This study compares the use of biochar and hydrochar for the remediation of sediment contaminated with pentachlorobenzene, hexachlorobenzene, lindane, trifluralin, alachlor, simazine, and atrazine with the motivation to make sediments contaminated by such priority substances usable as arable land for growing energy crops. Biochar and hydrochar originating from Miscanthus giganteus and Beta vulgaris shreds were compared for their potential to reduce contaminant associated risk in sediments. Specifically, by investigating the effects of sorbent amendment rate (1, 5, and 10 %) and incubation time (14, 30, and 180 d) on contaminant bioaccessibility, toxicity to the bacteria Vibrio fischeri, as well as toxicity and plant uptake in Zea mays. Biochar reduced contaminant bioaccessibility up to five times more than hydrochar. The bioaccessibility of contaminants decreased up to sevenfold with increasing incubation time, indicating that the performance of carbonaceous sorbents may be underestimated in short-term lab experiments. Biochar reduced contaminants toxicity to Vibrio fischeri, whereas hydrochar was itself toxic to the bacteria. Toxicity to Zea mays was determined by contaminant bioaccessibility but also sorbent feedstock with cellulose rich Beta vulgaris based sorbents exhibiting toxic effects. The plant uptake of all contaminants decreased after sorbent amendment.


Asunto(s)
Sedimentos Geológicos , Ríos , Carbón Orgánico , Productos Agrícolas , Zea mays
9.
Environ Sci Technol ; 56(16): 11323-11334, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35902073

RESUMEN

Understanding the environmental fate of microplastics is essential for their risk assessment. It is essential to differentiate size classes and degradation states. Still, insights into fragmentation and degradation mechanisms of primary and secondary microplastics into micro- and nanoplastic fragments and other degradation products are limited. Here, we present an adapted NanoRelease protocol for a UV-dose-dependent assessment and size-selective quantification of the release of micro- and nanoplastic fragments down to 10 nm and demonstrate its applicability for polyamide and thermoplastic polyurethanes. The tested cryo-milled polymers do not originate from actual consumer products but are handled in industry and are therefore representative of polydisperse microplastics occurring in the environment. The protocol is suitable for various types of microplastic polymers, and the measured rates can serve to parameterize mechanistic fragmentation models. We also found that primary microplastics matched the same ranking of weathering stability as their corresponding macroplastics and that dissolved organics constitute a major rate of microplastic mass loss. The results imply that previously formed micro- and nanoplastic fragments can further degrade into water-soluble organics with measurable rates that enable modeling approaches for all environmental compartments accessible to UV light.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Plásticos , Agua , Contaminantes Químicos del Agua/análisis
10.
Nanomaterials (Basel) ; 12(8)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35458040

RESUMEN

The potential environmental and human health risks from microplastic (1 µm to 1 mm) and nanoplastic (<1 µm) particles (MNPs) is receiving increasing attention from scientists and the public [...]

11.
Environ Sci Technol ; 54(19): 12051-12062, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32931256

RESUMEN

A potential risk from human uptake of microplastics is the release of plastics-associated xenobiotics, but the key physicochemical properties of microplastics controlling this process are elusive. Here, we show that the gastrointestinal bioaccessibility, assessed using an in vitro digestive model, of two model xenobiotics (pyrene, at 391-624 mg/kg, and 4-nonylphenol, at 3054-8117 mg/kg) bound to 18 microplastics (including pristine polystyrene, polyvinyl chloride, polyethylene terephthalate, polypropylene, thermoplastic polyurethane, and polyethylene, and two artificially aged samples of each polymer) covered wide ranges: 16.1-77.4% and 26.4-83.8%, respectively. Sorption/desorption experiments conducted in simulated gastric fluid indicated that structural rigidity of polymers was an important factor controlling bioaccessibility of the nonpolar, nonionic pyrene, likely by inducing physical entrapment of pyrene in porous domains, whereas polarity of microplastics controlled bioaccessibility of 4-nonylphenol, by regulating polar interactions. The changes of bioaccessibility induced by microplastics aging corroborated the important roles of polymeric structures and surface polarity in dictating sorption affinity and degree of desorption hysteresis, and consequently, gastrointestinal bioaccessibility. Variance-based global sensitivity analysis using a deep learning neural network approach further revealed that micropore volume was the most important microplastics property controlling bioaccessibility of pyrene, whereas the O/C ratio played a key role in dictating the bioaccessibility of 4-nonylphenol in the gastric tract.


Asunto(s)
Aprendizaje Profundo , Contaminantes Químicos del Agua , Adsorción , Humanos , Microplásticos , Plásticos , Contaminantes Químicos del Agua/análisis , Xenobióticos
12.
Environ Sci Process Impacts ; 22(9): 1888-1897, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32803213

RESUMEN

Dissolved organic matter (DOM) is ubiquitous in aquatic environments where it interacts with a variety of particles including carbonaceous materials (CMs). The complexity of both DOM and the CMs makes DOM-CM interactions difficult to predict. In this study we have identified the preferential sorption of specific DOM fractions as being dependent on their aromaticity and molecular weight, as well as on the surface properties of the CMs. This was achieved by conducting sorption batch experiments with three types of DOM (humic acid, Suwannee River natural organic matter, and a compost extract) and three types of CMs (graphite, carbon nanotubes, and biochar) with different geometries and surface complexities. The non-adsorbed DOM fraction was analyzed by size exclusion chromatography and preferentially sorbed molecular weight fractions were analyzed by UV/vis and fluorescence spectroscopy. All three sorbent types were found to preferentially sorb aromatic DOM fractions, but DOM fractionation depended on the particular combination of sorbent and sorbate characteristics. Single-walled carbon nanotubes only sorbed the smaller molecular weight fractions (<1 kDa). The sorption of smaller DOM fractions was not accompanied by a preference for less aromatic compounds, contrary to what was suggested in previous studies. While graphite preferentially sorbed the most aromatic DOM fraction (1-3 kDa), the structural heterogeneity of biochar resulted in reduced selectivity, sorbing all DOM > 1 kDa. The results explain the lack of correlation found in previous studies between the amount of aromatic carbon in a bulk DOM and its sorption coefficient. DOM sorption by CMs was generally controlled by DOM aromaticity but complex sorbent surfaces with high porosity, curvatures and functional groups strongly reduced the importance of aromaticity.


Asunto(s)
Nanotubos de Carbono , Adsorción , Sustancias Húmicas , Peso Molecular , Compuestos Orgánicos
14.
Environ Sci Technol ; 54(7): 4583-4591, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32124609

RESUMEN

Most contaminants of emerging concern are polar and/or ionizable organic compounds, whose removal from engineered and environmental systems is difficult. Carbonaceous sorbents include activated carbon, biochar, fullerenes, and carbon nanotubes, with applications such as drinking water filtration, wastewater treatment, and contaminant remediation. Tools for predicting sorption of many emerging contaminants to these sorbents are lacking because existing models were developed for neutral compounds. A method to select the appropriate sorbent for a given contaminant based on the ability to predict sorption is required by researchers and practitioners alike. Here, we present a widely applicable deep learning neural network approach that excellently predicted the conventionally used Freundlich isotherm fitting parameters log KF and n (R2 > 0.98 for log KF, and R2 > 0.91 for n). The neural network models are based on parameters generally available for carbonaceous sorbents and/or parameters freely available from online databases. A freely accessible graphical user interface is provided.


Asunto(s)
Contaminantes Ambientales , Nanotubos de Carbono , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico , Aprendizaje Profundo , Redes Neurales de la Computación
15.
Environ Sci Process Impacts ; 22(1): 121-130, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31691685

RESUMEN

Tire materials are the most commonly found elastomers in the environment and they account for a significant fraction of microplastic pollution. In the discussions on the environmental impact of microplastics tire materials and their sorption properties have been largely overlooked. In this study we used experimental sorption data from six organic probe sorbates sorbing to two tire materials and their major components, styrene butadiene rubber and carbon black, to gain a better understanding of the underlying sorption processes of tire materials. Commonly applied models used to describe non-linear sorption processes were unable to fully explain sorption to tire materials but showed that absorption into the rubber fraction dominated the sorption process. Hydrophobicity was approximated using the hexadecane-water partitioning constant, which correlated very well with the distribution data obtained for styrene rubber, whereas the correlations between hydrophobicity of sorbates and the sorption data to the tire materials were poor. Although hydrophobicity plays an important role in sorption to tire materials, additional interactions must be taken into account. Overall, the processes involved in sorption to tire materials differed significantly from those governing sorption to other microplastics.


Asunto(s)
Microplásticos , Compuestos Orgánicos , Adsorción , Microplásticos/química , Compuestos Orgánicos/química , Goma , Hollín
16.
MethodsX ; 6: 2729-2734, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31788438

RESUMEN

Polyvinyl chloride (PVC) is the third most used polymer for plastic products in the European Union (+NO/ CH) and contains the highest amounts of additives, especially phthalic acid esters (phthalates). Leaching kinetics of additives from (micro-) plastics into aqueous environments are highly relevant for environmental risk assessment and modelling of the fluxes of plastics and its associated additives. Investigating the leaching of phthalates into aqueous environments in batch experiments is challenging due to their low solubility and high hydrophobicity and there are no standard methods to study release processes. Here we describe an infinite sink method to investigate the leaching of phthalates from PVC into the aqueous phase. Spiking and leaching experiments using bis(2-ethylhexyl) phthalate as a model phthalate enabled the validation and evaluation of the designed infinite sink method. The developed method offers: •a low-cost and simple approach to investigate leaching of phthalates from PVC into aqueous environments•the use of a high-surface activated carbon powder as an infinite sink•a tool to elucidate the transport fluxes of plastics and additives.

17.
Environ Sci Process Impacts ; 21(10): 1729-1735, 2019 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-31478540

RESUMEN

Soot is an important carbonaceous nanoparticle (CNP) frequently found in natural environments. Its entry into surface waters can occur directly via surface runoff or infiltration, as well as via atmospheric deposition. Pristine soot is likely to rapidly undergo aggregation and subsequent sedimentation in aquatic environments. Further, soot can sorb a variety of organic contaminants, such as S-metolachlor (log KD = 3.25 ± 0.12). During atmospheric transport, soot can be chemically transformed by reactive oxygen species including NO2. The presence of natural organic matter (NOM) in surface waters can further affect the aquatic fate of soot. To better understand the processes driving the fate of soot and its interactions with contaminants, pristine and NO2-transformed model soot suspensions were investigated in the presence and absence of NOM. NO2-oxidized soot showed a smaller particle size, a higher number of particles remaining in suspension, and a decreased sorption of S-metolachlor (log KD = 2.47 ± 0.40). In agreement with findings for other CNPs, soot stability against aggregation was increased for both pristine and NO2 transformed soot in the presence of NOM.


Asunto(s)
Acetamidas/química , Dióxido de Nitrógeno/química , Hollín/química , Acetamidas/análisis , Nanopartículas , Tamaño de la Partícula , Hollín/análisis , Suspensiones
18.
Environ Sci Process Impacts ; 21(10): 1722-1728, 2019 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-31433415

RESUMEN

The beneficial properties of biochar have led to its increasing application to soils for environmental management. Despite its stability in soil, biochar can physically disintegrate into smaller particles, which can then be relocated from the application area. Biochar transport is strongly dependent on the biochar particle size and aggregation, with the extent of aggregation depending on the chemistry of the soil pore water. Biochar has a strong sorption affinity for polyaromatic hydrocarbons (PAHs) such as pyrene, which can also affect its transport. We therefore investigated biochar particle aggregation in solutions of different ionic strengths (ultrapure water, 0.01 M CaCl2, and 0.1 M CaCl2) with suspensions of biochar particles, and with suspensions of biochar particles loaded with pyrene (0.2 and 3.6 g kg-1). Increasing the pyrene concentration in ultrapure water resulted in an increase in the biochar particle size, an effect that was more pronounced following equilibration for 28 days than following equilibration for only 24 hours. Biochar particle aggregation in solutions containing both pyrene and 0.01 M CaCl2 was greatly enhanced compared to aggregation in similar solutions with no pyrene. However, the influence of pyrene became negligible at high CaCl2 concentrations (0.1 M CaCl2). To determine the fate of biochar in soil, both the presence of PAHs and the influence of the pore water's ionic strength therefore need to be taken into account.


Asunto(s)
Carbón Orgánico/química , Pirenos/química , Contaminantes del Suelo/química , Hidrocarburos Aromáticos/análisis , Hidrocarburos Aromáticos/química , Concentración Osmolar , Tamaño de la Partícula , Pirenos/análisis , Suelo/química , Contaminantes del Suelo/análisis , Agua/química
19.
PLoS One ; 14(6): e0217165, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31166981

RESUMEN

Once in the ocean, plastics are rapidly colonized by complex microbial communities. Factors affecting the development and composition of these communities are still poorly understood. Additionally, whether there are plastic-type specific communities developing on different plastics remains enigmatic. We determined the development and succession of bacterial communities on different plastics under ambient and dim light conditions in the coastal Northern Adriatic over the course of two months using scanning electron microscopy and 16S rRNA gene analyses. Plastics used were low- and high-density polyethylene (LDPE and HDPE, respectively), polypropylene (PP) and polyvinyl chloride with two typical additives (PVC DEHP and PVC DINP). The bacterial communities developing on the plastics clustered in two groups; one group was found on PVC and the other group on all the other plastics and on glass, which was used as an inert control. Specific bacterial taxa were found on specific surfaces in essentially all stages of biofilm development and in both ambient and dim light conditions. Differences in bacterial community composition between the different plastics and light exposures were stronger after an incubation period of one week than at the later stages of the incubation. Under both ambient and dim light conditions, one part of the bacterial community was common on all plastic types, especially in later stages of the biofilm development, with families such as Flavobacteriaceae, Rhodobacteraceae, Planctomycetaceae and Phyllobacteriaceae presenting relatively high relative abundances on all surfaces. Another part of the bacterial community was plastic-type specific. The plastic-type specific fraction was variable among the different plastic types and was more abundant after one week of incubation than at later stages of the succession.


Asunto(s)
Biopelículas/efectos de los fármacos , Microbiota/efectos de los fármacos , Microbiota/fisiología , Plásticos/farmacología , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/genética , Biopelículas/crecimiento & desarrollo , Microbiota/genética , Filogenia , Análisis de Secuencia de ADN
20.
Sci Total Environ ; 682: 348-355, 2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31125748

RESUMEN

Polystyrene (PS) is a plastic material that is well known for its use in many different applications, e.g. as shock sensitive packaging. With its prevalence across society, PS contributes significantly to the overall plastic load in aqueous systems. Sorption of organic compounds by the plastics, especially micrometer-sized particles, in the environment has become a concern in the past years. The aim of this study was to improve the understanding of sorption properties of PS, one of the major plastic pollutants in the aqueous environment. Batch experiments with PS film (29 µm thickness) were performed for 4 days using a diverse set of 24 sorbates to account for varying molecular properties like polarity or molecular volume. Isotherms were evaluated using different sorption models to elucidate the sorption process of PS. Sorption to PS film was non-linear and absorption into the bulk material was the dominant sorption mode. A clear discrimination between the specific and non-specific interactions in the aqueous environment could be shown. The non-linear sorption to PS was shown to be controlled by the molar volume but also by the polarizability/dipolarity parameter (S) of the ppLFER model. The latter is influenced by the aromatic π-π-interactions of PS with the sorbate. Similar to other plastics like polyethylene, sorption to PS is driven by hydrophobic interactions but phase descriptors of pristine PS were significantly different than descriptors for other environmental relevant plastics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA