Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 54
1.
Front Psychol ; 15: 1323397, 2024.
Article En | MEDLINE | ID: mdl-38770250

Background: Attention deficit hyperactivity disorder (ADHD) is a neurobiological disorder characterized by inattention, hyperactivity, and impulsivity. We hypothesized that chiropractic adjustments could improve these symptoms by enhancing prefrontal cortex function. This pilot study aimed to explore the feasibility and efficacy of 4 weeks of chiropractic adjustment on inattention, hyperactivity, and impulsivity in children with ADHD. Methods: 67 children with ADHD were randomly allocated to receive either chiropractic adjustments plus usual care (Chiro+UC) or sham chiropractic plus usual care (Sham+UC). The Vanderbilt ADHD Diagnostic Teacher Rating Scale (VADTRS), Swanson, Nolan and Pelham Teacher and Parents Rating Scale (SNAP-IV), and ADHD Rating Scale-IV were used to assess outcomes at baseline, 4 weeks, and 8 weeks. Feasibility measures such as recruitment, retention, blinding, safety, and adherence were recorded. Linear mixed regression models were used for data analysis. Results: 56 participants (mean age ± SD: 10.70 ± 3.93 years) were included in the analysis. Both the Chiro+UC and Sham+UC groups showed significant improvements in total and subscale ADHD scores at 4 weeks and 8 weeks. However, there were no significant differences between the two groups. Conclusion: This pilot study demonstrated that it was feasible to examine the effects of chiropractic adjustment when added to usual care on ADHD outcomes in children. While both groups showed improvements, the lack of significant between-group differences requires caution in interpretation due to the small sample size. Further research with larger samples and longer follow-up periods is needed to conclusively evaluate the effects of chiropractic adjustments on ADHD in children.

2.
J Integr Neurosci ; 23(5): 98, 2024 May 11.
Article En | MEDLINE | ID: mdl-38812396

OBJECTIVES: In this study, we explored the effects of chiropractic spinal adjustments on resting-state electroencephalography (EEG) recordings and early somatosensory evoked potentials (SEPs) in Alzheimer's and Parkinson's disease. METHODS: In this randomized cross-over study, 14 adults with Alzheimer's disease (average age 67 ± 6 years, 2 females:12 males) and 14 adults with Parkinson's disease (average age 62 ± 11 years, 1 female:13 males) participated. The participants underwent chiropractic spinal adjustments and a control (sham) intervention in a randomized order, with a minimum of one week between each intervention. EEG was recorded before and after each intervention, both during rest and stimulation of the right median nerve. The power-spectra was calculated for resting-state EEG, and the amplitude of the N30 peak was assessed for the SEPs. The source localization was performed on the power-spectra of resting-state EEG and the N30 SEP peak. RESULTS: Chiropractic spinal adjustment significantly reduced the N30 peak in individuals with Alzheimer's by 15% (p = 0.027). While other outcomes did not reach significance, resting-state EEG showed an increase in absolute power in all frequency bands after chiropractic spinal adjustments in individuals with Alzheimer's and Parkinson's disease. The findings revealed a notable enhancement in connectivity within the Default Mode Network (DMN) at the alpha, beta, and theta frequency bands among individuals undergoing chiropractic adjustments. CONCLUSIONS: We found that it is feasible to record EEG/SEP in individuals with Alzheimer's and Parkinson's disease. Additionally, a single session of chiropractic spinal adjustment reduced the somatosensory evoked N30 potential and enhancement in connectivity within the DMN at the alpha, beta, and theta frequency bands in individuals with Alzheimer's disease. Future studies may require a larger sample size to estimate the effects of chiropractic spinal adjustment on brain activity. Given the preliminary nature of our findings, caution is warranted when considering the clinical implications. CLINICAL TRIAL REGISTRATION: The study was registered by the Australian New Zealand Clinical Trials Registry (registration number ACTRN12618001217291 and 12618001218280).


Alzheimer Disease , Cross-Over Studies , Electroencephalography , Evoked Potentials, Somatosensory , Parkinson Disease , Humans , Female , Male , Parkinson Disease/physiopathology , Parkinson Disease/therapy , Aged , Alzheimer Disease/physiopathology , Alzheimer Disease/therapy , Middle Aged , Evoked Potentials, Somatosensory/physiology , Pilot Projects , Manipulation, Chiropractic/methods
3.
Sci Rep ; 14(1): 1159, 2024 01 12.
Article En | MEDLINE | ID: mdl-38216596

Increasing evidence suggests that a high-velocity, low-amplitude (HVLA) thrust directed at a dysfunctional vertebral segment in people with subclinical spinal pain alters various neurophysiological measures, including somatosensory evoked potentials (SEPs). We hypothesized that an HVLA thrust applied to a clinician chosen vertebral segment based on clinical indicators of vertebral dysfunction, in short, segment considered as "relevant" would significantly reduce the N30 amplitude compared to an HVLA thrust applied to a predetermined vertebral segment not based on clinical indicators of vertebral dysfunction or segment considered as "non-relevant". In this double-blinded, active-controlled, parallel-design study, 96 adults with recurrent mild neck pain, ache, or stiffness were randomly allocated to receiving a single thrust directed at either a segment considered as "relevant" or a segment considered as "non-relevant" in their upper cervical spine. SEPs of median nerve stimulation were recorded before and immediately after a single HVLA application delivered using an adjusting instrument (Activator). A linear mixed model was used to assess changes in the N30 amplitude. A significant interaction between the site of thrust delivery and session was found (F1,840 = 9.89, p < 0.002). Pairwise comparisons showed a significant immediate decrease in the N30 complex amplitude after the application of HVLA thrust to a segment considered "relevant" (- 16.76 ± 28.32%, p = 0.005). In contrast, no significant change was observed in the group that received HVLA thrust over a segment considered "non-relevant" (p = 0.757). Cervical HVLA thrust applied to the segment considered as "relevant" altered sensorimotor parameters, while cervical HVLA thrust over the segment considered as "non-relevant" did not. This finding supports the hypothesis that spinal site targeting of HVLA interventions is important when measuring neurophysiological responses. Further studies are needed to explore the potential clinical relevance of these findings.


Manipulation, Spinal , Nervous System Physiological Phenomena , Adult , Humans , Cervical Vertebrae , Neck , Neck Pain
4.
Sensors (Basel) ; 23(21)2023 Oct 28.
Article En | MEDLINE | ID: mdl-37960487

Dehydration is a common problem among older adults. It can seriously affect their health and wellbeing and sometimes leads to death, given the diminution of thirst sensation as we age. It is, therefore, essential to keep older adults properly hydrated by monitoring their fluid intake and estimating how much they drink. This paper aims to investigate the effect of surface electromyography (sEMG) features on the detection of drinking events and estimation of the amount of water swallowed per sip. Eleven individuals took part in the study, with data collected over two days. We investigated the best combination of a pool of twenty-six time and frequency domain sEMG features using five classifiers and seven regressors. Results revealed an average F-score over two days of 77.5±1.35% in distinguishing the drinking events from non-drinking events using three global features and 85.5±1.00% using three subject-specific features. The average volume estimation RMSE was 6.83±0.14 mL using one single global feature and 6.34±0.12 mL using a single subject-specific feature. These promising results validate and encourage the potential use of sEMG as an essential factor for monitoring and estimating the amount of fluid intake.


Deglutition , Drinking , Humans , Aged , Electromyography/methods
5.
Brain Sci ; 13(6)2023 Jun 13.
Article En | MEDLINE | ID: mdl-37371424

Non-specific low back pain (NSLBP) is a significant and pervasive public health issue in contemporary society. Despite the widespread prevalence of NSLBP, our understanding of its underlying causes, as well as our capacity to provide effective treatments, remains limited due to the high diversity in the population that does not respond to generic treatments. Clustering the NSLBP population based on shared characteristics offers a potential solution for developing personalized interventions. However, the complexity of NSLBP and the reliance on subjective categorical data in previous attempts present challenges in achieving reliable and clinically meaningful clusters. This study aims to explore the influence and importance of objective, continuous variables related to NSLBP and how to use these variables effectively to facilitate the clustering of NSLBP patients into meaningful subgroups. Data were acquired from 46 subjects who performed six simple movement tasks (back extension, back flexion, lateral trunk flexion right, lateral trunk flexion left, trunk rotation right, and trunk rotation left) at two different speeds (maximum and preferred). High-density electromyography (HD EMG) data from the lower back region were acquired, jointly with motion capture data, using passive reflective markers on the subject's body and clusters of markers on the subject's spine. An exploratory analysis was conducted using a deep neural network and factor analysis. Based on selected variables, various models were trained to classify individuals as healthy or having NSLBP in order to assess the importance of different variables. The models were trained using different subsets of data, including all variables, only anthropometric data (e.g., age, BMI, height, weight, and sex), only biomechanical data (e.g., shoulder and lower back movement), only neuromuscular data (e.g., HD EMG activity), or only balance-related data. The models achieved high accuracy in categorizing individuals as healthy or having NSLBP (full model: 93.30%, anthropometric model: 94.40%, biomechanical model: 84.47%, neuromuscular model: 88.07%, and balance model: 74.73%). Factor analysis revealed that individuals with NSLBP exhibited different movement patterns to healthy individuals, characterized by slower and more rigid movements. Anthropometric variables (age, sex, and BMI) were significantly correlated with NSLBP components. In conclusion, different data types, such as body measurements, movement patterns, and neuromuscular activity, can provide valuable information for identifying individuals with NSLBP. To gain a comprehensive understanding of NSLBP, it is crucial to investigate the main domains influencing its prognosis as a cohesive unit rather than studying them in isolation. Simplifying the conditions for acquiring dynamic data is recommended to reduce data complexity, and using back flexion and trunk rotation as effective options should be further explored.

6.
J Chiropr Med ; 22(4): 302-312, 2023 Dec.
Article En | MEDLINE | ID: mdl-38205225

Objectives: The purpose of this study was to determine effect sizes (ES) for changes in self-reported measures of musculoskeletal pain and dysfunction resulting from the one-to-zero method using a repeated measures study design. Methods: Twenty participants presenting with articular dysfunction of the occipito-atlantal (C0-C1) complex were treated using the one-to-zero method, a high-velocity low-amplitude thrust administered between the C0-C1 complex before treating other restrictive segments in a cephalocaudal direction. The participants completed online questionnaires using Google Forms that assessed aspects of the biopsychosocial model of pain at baseline and within a week after treatment. The questionnaires included the following: (1) Demographic and Health Behavior Survey; (2) Neck Bournemouth Questionnaire (NBQ) or Neck Disability Index (NDI); (3) Beck Anxiety Index (BAI); (4) Insomnia Severity Index (ISI); and (5) 36-Item Short Form Health Survey (SF-36). Paired t test or Wilcoxon signed ranks test was performed, dependent on normality. Cohen's d values were calculated for each questionnaire score (0.20 indicative of small; ≥0.50 medium; and ≥0.80 large ES). Results: The NDI, NBQ, BAI, and ISI had a large ES (all d ≥ 0.80). In the SF-36, 4 subscales had a small to near-medium ES, 1 subscale had a medium to near-large ES, and the remaining 2 had a large ES (d ≥ 0.80). The physical and mental component summary had a large (d = 0.88) and small ES (d = 0.35), respectively. Conclusion: The effect sizes suggest the one-to-zero treatment induces change in various aspects of the biopsychosocial model.

7.
J Clin Med ; 11(24)2022 Dec 17.
Article En | MEDLINE | ID: mdl-36556107

Certain blood biomarkers are associated with neural protection and neural plasticity in healthy people and individuals with prior brain injury. To date, no studies have evaluated the effects chiropractic care on serum brain-derived neurotrophic factor (BDNF), insulin-like growth factor-II (IGF-II) and glial cell-derived neurotrophic factor (GDNF) in people with stroke. This manuscript reports pre-specified, exploratory, secondary outcomes from a previously completed parallel group randomized controlled trial. We evaluated differences between four weeks of chiropractic spinal adjustments combined with the usual physical therapy (chiro + PT) and sham chiropractic with physical therapy (sham + PT) on resting serum BDNF, IGF-II and GDNF in 63 adults with chronic stroke. Blood samples were assessed at baseline, four weeks (post-intervention), and eight weeks (follow-up). Data were analyzed using a linear multivariate mixed effects model. Within both groups there was a significant decrease in the mean log-concentration of BDNF and IGF-II at each follow-up, and significant increase log-concentration of GDNF at eight-weeks' follow-up. However, no significant between-group differences in any of the blood biomarkers at each time-point were found. Further research is required to explore which factors influence changes in serum BDNF, IGF-II and GDNF following chiropractic spinal adjustments and physical therapy.

8.
Ann Clin Transl Neurol ; 9(5): 722-733, 2022 05.
Article En | MEDLINE | ID: mdl-35488791

OBJECTIVE: We propose a novel cue-based asynchronous brain-computer interface(BCI) for neuromodulation via the pairing of endogenous motor cortical activity with the activation of somatosensory pathways. METHODS: The proposed BCI detects the intention to move from single-trial EEG signals in real time, but, contrary to classic asynchronous-BCI systems, the detection occurs only during time intervals when the patient is cued to move. This cue-based asynchronous-BCI was compared with two traditional BCI modes (asynchronous-BCI and offline synchronous-BCI) and a control intervention in chronic stroke patients. The patients performed ankle dorsiflexion movements of the paretic limb in each intervention while their brain signals were recorded. BCI interventions decoded the movement attempt and activated afferent pathways via electrical stimulation. Corticomotor excitability was assessed using motor-evoked potentials in the tibialis-anterior muscle induced by transcranial magnetic stimulation before, immediately after, and 30 min after the intervention. RESULTS: The proposed cue-based asynchronous-BCI had significantly fewer false positives/min and false positives/true positives (%) as compared to the previously developed asynchronous-BCI. Linear-mixed-models showed that motor-evoked potential amplitudes increased following all BCI modes immediately after the intervention compared to the control condition (p <0.05). The proposed cue-based asynchronous-BCI resulted in the largest relative increase in peak-to-peak motor-evoked potential amplitudes(141% ± 33%) among all interventions and sustained it for 30 min(111% ± 33%). INTERPRETATION: These findings prove the high performance of a newly proposed cue-based asynchronous-BCI intervention. In this paradigm, individuals receive precise instructions (cue) to promote engagement, while the timing of brain activity is accurately detected to establish a precise association with the delivery of sensory input for plasticity induction.


Brain-Computer Interfaces , Stroke , Cues , Evoked Potentials, Motor/physiology , Humans , Stroke/therapy , Transcranial Magnetic Stimulation/methods
9.
Brain Sci ; 11(8)2021 Aug 06.
Article En | MEDLINE | ID: mdl-34439666

Attention Deficit Hyperactivity Disorder (ADHD) is a prevalent, chronic neurodevelopmental disorder that affects oculomotor (eye movement) control. Dysfunctional oculomotor control may result in reading or educational difficulties. This randomized controlled crossover study sought to investigate the feasibility of a larger scale trial and effects of a single session of spinal manipulation on oculomotor control in children with ADHD. Thirty children participated in the study and were randomized into either control-first or spinal manipulation first groups. The results indicate that the trial was feasible. Secondary outcomes showed that there was a significant decrease in reading time after the spinal manipulation intervention compared to the control intervention. Future studies of the effects of spinal manipulation on oculomotor control in children with ADHD are suggested.

10.
Medicina (Kaunas) ; 57(6)2021 May 27.
Article En | MEDLINE | ID: mdl-34071880

The current COVID-19 pandemic has necessitated the need to find healthcare solutions that boost or support immunity. There is some evidence that high-velocity, low-amplitude (HVLA) controlled vertebral thrusts have the potential to modulate immune mediators. However, the mechanisms of the link between HVLA controlled vertebral thrusts and neuroimmune function and the associated potential clinical implications are less clear. This review aims to elucidate the underlying mechanisms that can explain the HVLA controlled vertebral thrust--neuroimmune link and discuss what this link implies for clinical practice and future research needs. A search for relevant articles published up until April 2021 was undertaken. Twenty-three published papers were found that explored the impact of HVLA controlled vertebral thrusts on neuroimmune markers, of which eighteen found a significant effect. These basic science studies show that HVLA controlled vertebral thrust influence the levels of immune mediators in the body, including neuropeptides, inflammatory markers, and endocrine markers. This narravtive review discusses the most likely mechanisms for how HVLA controlled vertebral thrusts could impact these immune markers. The mechanisms are most likely due to the known changes in proprioceptive processing that occur within the central nervous system (CNS), in particular within the prefrontal cortex, following HVLA spinal thrusts. The prefrontal cortex is involved in the regulation of the autonomic nervous system, the hypothalamic-pituitary-adrenal axis and the immune system. Bi-directional neuro-immune interactions are affected by emotional or pain-related stress. Stress-induced sympathetic nervous system activity also alters vertebral motor control. Therefore, there are biologically plausible direct and indirect mechanisms that link HVLA controlled vertebral thrusts to the immune system, suggesting HVLA controlled vertebral thrusts have the potential to modulate immune function. However, it is not yet known whether HVLA controlled vertebral thrusts have a clinically relevant impact on immunity. Further research is needed to explore the clinical impact of HVLA controlled vertebral thrusts on immune function.


COVID-19 , Manipulation, Spinal , Humans , Hypothalamo-Hypophyseal System , Pandemics , Pituitary-Adrenal System , SARS-CoV-2
11.
Brain Sci ; 11(6)2021 May 21.
Article En | MEDLINE | ID: mdl-34064209

Chiropractic spinal adjustments have been shown to result in short-term increases in muscle strength in chronic stroke patients, however, the effect of longer-term chiropractic spinal adjustments on people with chronic stroke is unknown. This exploratory study assessed whether 4 weeks of chiropractic spinal adjustments, combined with physical therapy (chiro + PT), had a greater impact than sham chiropractic with physical therapy (sham + PT) did on motor function (Fugl Meyer Assessment, FMA) in 63 subacute or chronic stroke patients. Secondary outcomes included health-related quality of life and other measures of functional mobility and disability. Outcomes were assessed at baseline, 4 weeks (post-intervention), and 8 weeks (follow-up). Data were analyzed using linear mixed-effects models or generalized linear mixed models. A post-hoc responder analysis was performed to investigate the clinical significance of findings. At 4 weeks, there was a larger effect of chiro + PT, compared with sham + PT, on the FMA (difference = 6.1, p = 0.04). The responder analysis suggested the improvements in motor function seen following chiropractic spinal adjustments may have been clinically significant. There was also a robust improvement in both groups in most measures from baseline to the 4- and 8-week assessments, but between-group differences were no longer significant at the 8-week assessment. Four weeks of chiro + PT resulted in statistically significant improvements in motor function, compared with sham + PT, in people with subacute or chronic stroke. These improvements appear to be clinically important. Further trials, involving larger group sizes and longer follow-up and intervention periods, are required to corroborate these findings and further investigate the impacts of chiropractic spinal adjustments on motor function in post-stroke survivors. ClinicalTrials.gov Identifier NCT03849794.

12.
Eur J Appl Physiol ; 121(10): 2675-2720, 2021 Oct.
Article En | MEDLINE | ID: mdl-34164712

PURPOSE: There is growing evidence that vertebral column function and dysfunction play a vital role in neuromuscular control. This invited review summarises the evidence about how vertebral column dysfunction, known as a central segmental motor control (CSMC) problem, alters neuromuscular function and how spinal adjustments (high-velocity, low-amplitude or HVLA thrusts directed at a CSMC problem) and spinal manipulation (HVLA thrusts directed at segments of the vertebral column that may not have clinical indicators of a CSMC problem) alters neuromuscular function. METHODS: The current review elucidates the peripheral mechanisms by which CSMC problems, the spinal adjustment or spinal manipulation alter the afferent input from the paravertebral tissues. It summarises the contemporary model that provides a biologically plausible explanation for CSMC problems, the manipulable spinal lesion. This review also summarises the contemporary, biologically plausible understanding about how spinal adjustments enable more efficient production of muscular force. The evidence showing how spinal dysfunction, spinal manipulation and spinal adjustments alter central multimodal integration and motor control centres will be covered in a second invited review. RESULTS: Many studies have shown spinal adjustments increase voluntary force and prevent fatigue, which mainly occurs due to altered supraspinal excitability and multimodal integration. The literature suggests physical injury, pain, inflammation, and acute or chronic physiological or psychological stress can alter the vertebral column's central neural motor control, leading to a CSMC problem. The many gaps in the literature have been identified, along with suggestions for future studies. CONCLUSION: Spinal adjustments of CSMC problems impact motor control in a variety of ways. These include increasing muscle force and preventing fatigue. These changes in neuromuscular function most likely occur due to changes in supraspinal excitability. The current contemporary model of the CSMC problem, and our understanding of the mechanisms of spinal adjustments, provide a biologically plausible explanation for how the vertebral column's central neural motor control can dysfunction, can lead to a self-perpetuating central segmental motor control problem, and how HVLA spinal adjustments can improve neuromuscular function.


Chiropractic , Lumbar Vertebrae/physiopathology , Manipulation, Spinal , Muscle Strength/physiology , Humans , Motor Activity/physiology , Neuromuscular Junction/physiology
13.
J Manipulative Physiol Ther ; 44(6): 511, 2021.
Article En | MEDLINE | ID: mdl-34144826
14.
Brain Sci ; 11(1)2021 Jan 14.
Article En | MEDLINE | ID: mdl-33466707

Over recent years, a growing body of research has highlighted the neural plastic effects of spinal manipulation on the central nervous system. Recently, it has been shown that spinal manipulation improved outcomes, such as maximum voluntary force and limb joint position sense, reflecting improved sensorimotor integration and processing. This study aimed to further evaluate how spinal manipulation can alter neuromuscular activity. High density electromyography (HD sEMG) signals from the tibialis anterior were recorded and decomposed in order to study motor unit changes in 14 subjects following spinal manipulation or a passive movement control session in a crossover study design. Participants were asked to produce ankle dorsiflexion at two force levels, 5% and 10% of maximum voluntary contraction (MVC), following two different patterns of force production ("ramp" and "ramp and maintain"). A significant decrease in the conduction velocity (p = 0.01) was observed during the "ramp and maintain" condition at 5% MVC after spinal manipulation. A decrease in conduction velocity suggests that spinal manipulation alters motor unit recruitment patterns with an increased recruitment of lower threshold, lower twitch torque motor units.

15.
Front Neurol ; 12: 747261, 2021.
Article En | MEDLINE | ID: mdl-35185747

This study aimed to investigate the effects of a single session of chiropractic spinal adjustment on the cortical drive to the lower limb in chronic stroke patients. In a single-blinded, randomized controlled parallel design study, 29 individuals with chronic stroke and motor weakness in a lower limb were randomly divided to receive either chiropractic spinal adjustment or a passive movement control intervention. Before and immediately after the intervention, transcranial magnetic stimulation (TMS)-induced motor evoked potentials (MEPs) were recorded from the tibialis anterior (TA) muscle of the lower limb with the greatest degree of motor weakness. Differences in the averaged peak-peak MEP amplitude following interventions were calculated using a linear regression model. Chiropractic spinal adjustment elicited significantly larger MEP amplitude (pre = 0.24 ± 0.17 mV, post = 0.39 ± 0.23 mV, absolute difference = +0.15 mV, relative difference = +92%, p < 0.001) compared to the control intervention (pre = 0.15 ± 0.09 mV, post = 0.16 ± 0.09 mV). The results indicate that chiropractic spinal adjustment increases the corticomotor excitability of ankle dorsiflexor muscles in people with chronic stroke. Further research is required to investigate whether chiropractic spinal adjustment increases dorsiflexor muscle strength and walking function in people with stroke.

16.
Healthcare (Basel) ; 8(4)2020 Dec 10.
Article En | MEDLINE | ID: mdl-33321904

There is growing evidence showing that spinal manipulation increases muscle strength in healthy individuals as well as in people with some musculoskeletal and neurological disorders. However, the underlying mechanism by which spinal manipulation changes muscle strength is less clear. This study aimed to assess the effects of a single spinal manipulation session on the electrophysiological and metabolic properties of the tibialis anterior (TA) muscle. Maximum voluntary contractions (MVC) of the ankle dorsiflexors, high-density electromyography (HDsEMG), intramuscular EMG, and near-infrared spectroscopy (NIRS) were recorded from the TA muscle in 25 participants with low level recurring spinal dysfunction using a randomized controlled crossover design. The following outcomes: motor unit discharge rate (MUDR), strength (force at MVC), muscle conduction velocity (CV), relative changes in oxy- and deoxyhemoglobin were assessed pre and post a spinal manipulation intervention and passive movement control. Repeated measures ANOVA was used to assess within and between-group differences. Following the spinal manipulation intervention, there was a significant increase in MVC (p = 0.02; avg 18.87 ± 28.35%) and a significant increase in CV in both the isometric steady-state (10% of MVC) contractions (p < 0.01; avg 22.11 ± 11.69%) and during the isometric ramp (10% of MVC) contractions (p < 0.01; avg 4.52 ± 4.58%) compared to the control intervention. There were no other significant findings. The observed TA strength and CV increase, without changes in MUDR, suggests that the strength changes observed following spinal manipulation are, in part, due to increased recruitment of larger, higher threshold motor units. Further research needs to investigate the longer term and potential functional effects of spinal manipulation in various patients who may benefit from improved muscle function and greater motor unit recruitment.

17.
Brain Sci ; 10(9)2020 Sep 17.
Article En | MEDLINE | ID: mdl-32957711

Stroke impairments often present as cognitive and motor deficits, leading to a decline in quality of life. Recovery strategy and mechanisms, such as neuroplasticity, are important factors, as these can help improve the effectiveness of rehabilitation. The present study investigated chiropractic spinal manipulation (SM) and its effects on resting-state functional connectivity in 24 subacute to chronic stroke patients monitored by electroencephalography (EEG). Functional connectivity of both linear and non-linear coupling was estimated by coherence and phase lag index (PLI), respectively. Non-parametric cluster-based permutation tests were used to assess the statistical significance of the changes in functional connectivity following SM. Results showed a significant increase in functional connectivity from the PLI metric in the alpha band within the default mode network (DMN). The functional connectivity between the posterior cingulate cortex and parahippocampal regions increased following SM, t (23) = 10.45, p = 0.005. No significant changes occurred following the sham control procedure. These findings suggest that SM may alter functional connectivity in the brain of stroke patients and highlights the potential of EEG for monitoring neuroplastic changes following SM. Furthermore, the altered connectivity was observed between areas which may be affected by factors such as decreased pain perception, episodic memory, navigation, and space representation in the brain. However, these factors were not directly monitored in this study. Therefore, further research is needed to elucidate the underlying mechanisms and clinical significance of the observed changes.

18.
Brain Sci ; 10(10)2020 Sep 23.
Article En | MEDLINE | ID: mdl-32977661

Mild cognitive impairment (MCI) is becoming a serious problem for developing countries as the lifespan of populations increases. Exercise is known to be clinically beneficial for MCI patients. Somatosensory-evoked potentials (SEPs) may be a potential diagnostic and prognostic marker for this population. The objective of this study was to determine the acute effects of aerobic exercise on SEPs in patients with MCI, to test whether SEPs are sensitive enough to detect improvements in early somatosensory processing. The study had a randomized parallel-group design and included 28 MCI subjects (14 in the experimental group and 14 in the control group). The experimental intervention was 20 min of aerobic exercise using a stationary bicycle. The control intervention involved 20 min of movements and stretches. Subjects were assessed before and after a single intervention session. SEPs were recorded by stimulating the median nerve of the dominant hand. Analysis of normalized SEP peak amplitudes showed that a single session of aerobic activity significantly reduced the N30 peak at the F3 channel (p = 0.03). There were no significant effects of aerobic exercise on SEP peak latencies. The results indicate that 20 min of aerobic exercise has a significant effect on the N30 SEP peak amplitude in MCI patients. The results suggest that aerobic exercise is likely to provide sensory-enriching inputs that enhance sensorimotor integration. Future studies should assess the effects of aerobic exercise on somatosensory processing in progressive stages of Alzheimer's disease, longer exercise durations, and multiple exercise sessions.

19.
Sensors (Basel) ; 20(12)2020 Jun 15.
Article En | MEDLINE | ID: mdl-32549396

Recent developments in implantable technology, such as high-density recordings, wireless transmission of signals to a prosthetic hand, may pave the way for intramuscular electromyography (iEMG)-based myoelectric control in the future. This study aimed to investigate the real-time control performance of iEMG over time. A novel protocol was developed to quantify the robustness of the real-time performance parameters. Intramuscular wires were used to record EMG signals, which were kept inside the muscles for five consecutive days. Tests were performed on multiple days using Fitts' law. Throughput, completion rate, path efficiency and overshoot were evaluated as performance metrics using three train/test strategies. Each train/test scheme was categorized on the basis of data quantity and the time difference between training and testing data. An artificial neural network (ANN) classifier was trained and tested on (i) data from the same day (WDT), (ii) data collected from the previous day and tested on present-day (BDT) and (iii) trained on all previous days including the present day and tested on present-day (CDT). It was found that the completion rate (91.6 ± 3.6%) of CDT was significantly better (p < 0.01) than BDT (74.02 ± 5.8%) and WDT (88.16 ± 3.6%). For BDT, on average, the first session of each day was significantly better (p < 0.01) than the second and third sessions for completion rate (77.9 ± 14.0%) and path efficiency (88.9 ± 16.9%). Subjects demonstrated the ability to achieve targets successfully with wire electrodes. Results also suggest that time variations in the iEMG signal can be catered by concatenating the data over several days. This scheme can be helpful in attaining stable and robust performance.


Electromyography/instrumentation , Muscle, Skeletal/physiology , Pattern Recognition, Automated , Electrodes , Humans , Neural Networks, Computer
20.
Brain Sci ; 10(5)2020 Apr 27.
Article En | MEDLINE | ID: mdl-32349288

: Objective: The purpose of this study was to evaluate the impact of chiropractic spinal manipulation on the early somatosensory evoked potentials (SEPs) and resting-state electroencephalography (EEG) recorded from chronic stroke patients. Methods: Seventeen male patients (53 ± 12 years old) participated in this randomized cross-over study. The patients received chiropractic spinal manipulation and control intervention, in random order, separated by at least 24 hours. EEG was recorded before and after each intervention during rest and stimulation of the non-paretic median nerve. For resting-state EEG, the delta-alpha ratio, brain-symmetry index, and power-spectra were calculated. For SEPs, the amplitudes and latencies of N20 and N30 peaks were assessed. Source localization was performed on the power-spectra of resting-state EEG and the N30 SEP peak. Results: Following spinal manipulation, the N30 amplitude increased by 39%, which was a significant increase compared to the control intervention (p < 0.01). The latency and changes to the strength of the cortical sources underlying the N30 peak were not significant. The N20 peak, the resting-state power-spectra, delta-alpha ratio, brain-symmetry index, and resting-state source localization showed no significant changes after either intervention. Conclusion: A single session of chiropractic spinal manipulation increased the amplitude of the N30 SEP peak in a group of chronic stroke patients, which may reflect changes to early sensorimotor function. More research is required to investigate the long-term effects of chiropractic spinal manipulation, to better understand what impact it may have on the neurological function of stroke survivors.

...