Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Geroscience ; 46(1): 367-394, 2024 Feb.
Article En | MEDLINE | ID: mdl-37875652

Young blood plasma is known to confer beneficial effects on various organs in mice and rats. However, it was not known whether plasma from young adult pigs rejuvenates old rat tissues at the epigenetic level; whether it alters the epigenetic clock, which is a highly accurate molecular biomarker of aging. To address this question, we developed and validated six different epigenetic clocks for rat tissues that are based on DNA methylation values derived from n = 613 tissue samples. As indicated by their respective names, the rat pan-tissue clock can be applied to DNA methylation profiles from all rat tissues, while the rat brain, liver, and blood clocks apply to the corresponding tissue types. We also developed two epigenetic clocks that apply to both human and rat tissues by adding n = 1366 human tissue samples to the training data. We employed these six rat clocks to investigate the rejuvenation effects of a porcine plasma fraction treatment in different rat tissues. The treatment more than halved the epigenetic ages of blood, heart, and liver tissue. A less pronounced, but statistically significant, rejuvenation effect could be observed in the hypothalamus. The treatment was accompanied by progressive improvement in the function of these organs as ascertained through numerous biochemical/physiological biomarkers, behavioral responses encompassing cognitive functions. An immunoglobulin G (IgG) N-glycosylation pattern shift from pro- to anti-inflammatory also indicated reversal of glycan aging. Overall, this study demonstrates that a young porcine plasma-derived treatment markedly reverses aging in rats according to epigenetic clocks, IgG glycans, and other biomarkers of aging.


Aging , Epigenesis, Genetic , Humans , Rats , Mice , Animals , Swine , Aging/physiology , Biomarkers , Plasma , Immunoglobulin G
2.
bioRxiv ; 2023 Aug 07.
Article En | MEDLINE | ID: mdl-37609328

Young blood plasma is known to confer beneficial effects on various organs in mice and rats. However, it was not known whether plasma from young pigs rejuvenates old rat tissues at the epigenetic level; whether it alters the epigenetic clock, which is a highly accurate molecular biomarker of aging. To address this question, we developed and validated six different epigenetic clocks for rat tissues that are based on DNA methylation values derived from n=613 tissue samples. As indicated by their respective names, the rat pan-tissue clock can be applied to DNA methylation profiles from all rat tissues, while the rat brain-, liver-, and blood clocks apply to the corresponding tissue types. We also developed two epigenetic clocks that apply to both human and rat tissues by adding n=1366 human tissue samples to the training data. We employed these six rat clocks to investigate the rejuvenation effects of a porcine plasma fraction treatment in different rat tissues. The treatment more than halved the epigenetic ages of blood, heart, and liver tissue. A less pronounced, but statistically significant, rejuvenation effect could be observed in the hypothalamus. The treatment was accompanied by progressive improvement in the function of these organs as ascertained through numerous biochemical/physiological biomarkers and behavioral responses to assess cognitive functions. An immunoglobulin G (IgG) N-glycosylation pattern shift from pro- to anti-inflammatory also indicated reversal of glycan aging. Overall, this study demonstrates that a young porcine plasma-derived treatment markedly reverses aging in rats according to epigenetic clocks, IgG glycans, and other biomarkers of aging.

4.
Anal Bioanal Chem ; 415(12): 2239-2247, 2023 May.
Article En | MEDLINE | ID: mdl-36914840

Breast milk immunoglobulin G (IgG) plays an important role in the transfer of passive immunity in early life and in shaping the neonatal immune system through N-glycan-mediated effector functions. Currently, there are no protocols available to analyze breast milk IgG-Fc glycosylation in mouse models. Therefore, we developed and validated a glycoproteomic workflow for the medium-throughput subclass-specific nano-LC-MS analysis of IgG enriched from small milk volumes of lactating mice. With the established methods, the IgG glycopatterns in a mouse model of antibiotic use during pregnancy and increased asthma susceptibility in the offspring were analyzed. Pregnant BALB/c mice were treated with vancomycin during gestation days 8-17 and IgG1F, IgG2, and IgG3-Fc glycosylation was subsequently analyzed in maternal serum, maternal breast milk, and offspring serum on postnatal day 15. The IgG glycosylation profiles of mouse maternal milk and serum revealed no significant differences within the glycoforms quantified across subclasses. However, vancomycin use during pregnancy was associated with changes in IgG-Fc glycosylation in offspring serum, shown by the decreased relative abundance of the IgG1F-G1 and IgG3-G0 glycoforms, together with the increased relative abundance of the IgG3-G2 and S1 glycoforms. The workflow presented will aid in the emerging integrative multi-omics- and glycomics-oriented milk analyses both in rodent models and human cohorts for a better understanding of mother-infant immunological interactions.


Mass Spectrometry , Animals , Mice , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Vancomycin/pharmacology , Glycosylation , Chromatography, High Pressure Liquid , Mass Spectrometry/methods , Pregnancy , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/metabolism , Milk/immunology , Female , Mice, Inbred BALB C
5.
Plant Cell Rep ; 41(11): 2139-2157, 2022 Nov.
Article En | MEDLINE | ID: mdl-36066603

KEY MESSAGE: BPM1 interacts with components of the DDR complex and stimulates DNA methylation at CHH sites, suggesting its involvement in the RdDM methylation pathway. The best-known function of MATH-BTB proteins, including Arabidopsis BPM proteins, is their role as substrate-specific adaptors of CUL3-based E3 ligases in the ubiquitin-proteasome pathway. This paper reports a new CUL3-independent role of BPM1 in RNA-directed DNA methylation (RdDM). Using quantitative and qualitative Y2H, pull down, microscale thermophoresis and FRET-FLIM, we demonstrate that BPM1 interacts with DMS3 and RDM1, components of the chromatin remodeling DDR complex involved in the recruitment of the RdDM methylation machinery. All three proteins colocalized predominantly in the nucleus. The MATH domain, which specifically binds proteins destined for degradation, was not essential for interactions with DMS3 and RDM1. In plants overexpressing BPM1, endogenous DMS3 protein levels were stable, indicating that BPM1 does not induce proteasomal degradation. In RDM1-overexpressing plants, RDM1 was not ubiquitinated. Together, these results suggest that BPM1 does not mediate the degradation of DMS3 and RDM1. Additionally, overexpression of BPM1 caused increased global methylation levels as well as CHH methylation in promoters of two RdDM-regulated genes, FWA and CML41. Overall, BPM1 seems to have a stimulating effect on RdDM activity, and this role appears to be unrelated to its known function as a Cul3-based E3 ligase adaptor.


Arabidopsis Proteins , Arabidopsis , DNA Methylation/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Cullin Proteins/genetics , Cullin Proteins/metabolism , RNA/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Transcription Factors/genetics , Homeodomain Proteins/genetics
6.
Int J Mol Sci ; 23(15)2022 Jul 30.
Article En | MEDLINE | ID: mdl-35955616

Immunosuppressants and biologicals are widely used therapeutics for various chronic inflammatory diseases (CID). To gain more detailed insight into their downstream effects, we examined their impact on serum immunoglobulin G (IgG) glycosylation. We analyzed IgG subclass-specific fragment crystallizable (Fc) N-glycosylation in patients suffering from various CID using the LC-MS approach. Firstly, we compared IgG Fc N-glycosylation between 128 CID patients and 204 healthy controls. Our results replicated previously observed CID-related decrease in IgG Fc galactosylation (adjusted p-value range 1.70 × 10-2-5.95 × 10-22) and sialylation (adjusted p-value range 1.85 × 10-2-1.71 × 10-18). Secondly, to assess changes in IgG Fc N-glycosylation associated with therapy and remission status, we compared 139 CID patients receiving either azathioprine, infliximab, or vedolizumab therapy. We observed an increase in IgG Fc galactosylation (adjusted p-value range 1.98 × 10-2-1.30 × 10-15) and sialylation (adjusted p-value range 3.28 × 10-6-4.34 × 10-18) during the treatment. Furthermore, patients who reached remission displayed increased Fc galactosylation levels (p-value range 2.25 × 10-2-5.44 × 10-3) in comparison to patients with active disease. In conclusion, the alterations in IgG Fc glycosylation and the fact these changes are even more pronounced in patients who achieved remission, suggest modulation of IgG inflammatory potential associated with CID therapy.


Immunoglobulin Fc Fragments , Immunoglobulin G , Chromatography, Liquid , Glycosylation , Humans , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin Fc Fragments/therapeutic use , Immunoglobulin G/metabolism , Mass Spectrometry
7.
Exp Suppl ; 112: 73-135, 2021.
Article En | MEDLINE | ID: mdl-34687008

Mass spectrometry and its hyphenated techniques enabled by the improvements in liquid chromatography, capillary electrophoresis, novel ionization, and fragmentation modes are truly a cornerstone of robust and reliable protein glycosylation analysis. Boost in immunoglobulin G (IgG) glycan and glycopeptide profiling demands for both applied biomedical and research applications has brought many new advances in the field in terms of technical innovations, sample preparation, improved throughput, and confidence in glycan structural characterization. This chapter summarizes mass spectrometry basics, focusing on IgG and monoclonal antibody N-glycosylation analysis on several complexity levels. Different approaches, including antibody enrichment, glycan release, labeling, and glycopeptide preparation and purification, are covered and illustrated with recent breakthroughs and examples from the literature omitting excessive theoretical frameworks. Finally, selected highly popular methodologies in IgG glycoanalytics such as liquid chromatography-mass spectrometry and matrix-assisted laser desorption ionization are discussed more thoroughly yet in simple terms making this text a practical starting point either for the beginner in the field or an experienced clinician trying to make sense out of the IgG glycomic or glycoproteomic dataset.


Glycopeptides , Immunoglobulin G , Chromatography, Liquid , Glycosylation , Immunoglobulin G/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
8.
J Proteomics ; 245: 104293, 2021 08 15.
Article En | MEDLINE | ID: mdl-34118474

Immunoglobulin G (IgG) glycosylation corresponds well with immune system changes, so it can potentially be used as a biomarker for the consequences of chronic stress such as low-grade inflammation and enhanced immunosenescence in older animals. Here we present a high-throughput glycoproteomic workflow, including IgG enrichment, HILIC glycopeptide purification, and nano-LC-MS analysis of tryptic glycopeptides applied for the analysis of rat IgG. A cohort of 80 animals was exposed to seven stressors in a customized chronic stress protocol with blood and tissue sampling in three timepoints. Young female rats experienced an increase in agalactosylated glycoforms on IgG2a and IgG2c accompanied by a decrease in monogalactosylation. Among old females, increased galactosylation was observed in the IgG2b subclass, pointing to an anti-inflammatory activity of IgG. Additionally, IgG Fc N-glycosylation patterns in Sprague Dawley rats were analyzed, quantified, and reported for the first time. Our findings emphasize age-, sex- and subclass-dependent differences in IgG glycosylation related to chronic stress exposure, confirming the relevance of newly developed methods for further research in glycobiology of rodent immune response. SIGNIFICANCE: In this study, we showed that a high-throughput streamlined methodology based on protein L 96-well monolithic plates for efficient rat IgG immunoaffinity enrichment from blood plasma, paired with appropriate tryptic glycopeptide preparation, HILIC-SPE enrichment, and nano-LC-MS methods was suitable for quick processing of large sample sets. We report a subclass-specific profiling and changes in rat IgG Fc galactosylation and adrenal gland immunohistochemistry of male and female animals exposed to a customized chronic stress protocol.


Immunoglobulin Fc Fragments , Immunoglobulin G , Animals , Female , Glycopeptides , Glycosylation , Immunoglobulin Fc Fragments/metabolism , Male , Rats , Rats, Sprague-Dawley
9.
Sci Rep ; 10(1): 15243, 2020 09 17.
Article En | MEDLINE | ID: mdl-32943699

Early postnatal life is characterized by a critical time period in which the developing neonatal immune system transitions from passive immunity, induced by protective maternal antibodies, to the competence of a fully functioning immune system. The inflammatory capability of both maternal and neonatal antibodies is governed by N-linked glycosylation of the Fc region, and though this has been examined extensively in adults, there is currently little information regarding antibody glycosylation patterns during early postnatal life. To characterize the murine IgG Fc glycosylation profile during early life, we used nano-LC-ESI-Qq-TOF mass spectrometry analysis to assess subclass specific Asn-297 glycosylation patterns in the serum of BALB/c mice from 5-60 days of age. From birth to adulthood, we observed a decline in proinflammatory Fc glycosylation in all IgG subclasses. This was shown by significantly reduced agalactosylated and monogalactosylated structures combined with increased sialylation after weaning at 45 and 60 days of age. This information indicates that the transition between neonatal life and adulthood in mice is accompanied by reduction of inflammatory IgG antibodies. Our study contributes to a growing body of literature indicating the importance of IgG Fc glycosylation and its association with inflammation during different life stages.


Immune System/growth & development , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin G/metabolism , Age Factors , Animals , Animals, Newborn , Female , Glycosylation , Immune System/immunology , Immune System/metabolism , Immunoglobulin Fc Fragments/classification , Immunoglobulin G/classification , Male , Mice , Mice, Inbred BALB C , Pregnancy , Spectrometry, Mass, Electrospray Ionization
...