Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(30): 39165-39180, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39041490

RESUMEN

Methods for promoting and controlling the differentiation of human mesenchymal stem cells (hMSCs) in vitro before in vivo transplantation are crucial for the advancement of tissue engineering and regenerative medicine. In this study, we developed poly(ethylene glycol) diacrylate (PEGDA) hydrogels with tunable mechanical properties, including elasticity and viscoelasticity, coupled with bioactivity achieved through the immobilization of a mixture of RGD and a mimetic peptide of the BMP-2 protein. Despite the key relevance of hydrogel mechanical properties for cell culture, a standard for its characterization has not been proposed, and comparisons between studies are challenging due to the different techniques employed. Here, a comprehensive approach was employed to characterize the elasticity and viscoelasticity of these hydrogels, integrating compression testing, rheology, and atomic force microscopy (AFM) microindentation. Distinct mechanical behaviors were observed across different PEGDA compositions, and some consistent trends across multiple techniques were identified. Using a photoactivated cross-linker, we controlled the functionalization density independently of the mechanical properties. X-ray photoelectrin spectroscopy and fluorescence microscopy were employed to evaluate the functionalization density of the materials before the culturing of hMSCs on them. The cells cultured on all functionalized hydrogels expressed an early osteoblast marker (Runx2) after 2 weeks, even in the absence of a differentiation-inducing medium compared to our controls. Additionally, after only 1 week of culture with osteogenic differentiation medium, cells showed accelerated differentiation, with clear morphological differences observed among cells in the different conditions. Notably, cells on stiff but stress-relaxing hydrogels exhibited an overexpression of the osteocyte marker E11. This suggests that the combination of the functionalization procedure with the mechanical properties of the hydrogel provides a potent approach to promoting the osteogenic differentiation of hMSCs.


Asunto(s)
Regeneración Ósea , Elasticidad , Hidrogeles , Células Madre Mesenquimatosas , Polietilenglicoles , Humanos , Polietilenglicoles/química , Hidrogeles/química , Hidrogeles/farmacología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Regeneración Ósea/efectos de los fármacos , Viscosidad , Diferenciación Celular/efectos de los fármacos , Proteína Morfogenética Ósea 2/química , Proteína Morfogenética Ósea 2/farmacología , Oligopéptidos/química , Oligopéptidos/farmacología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ingeniería de Tejidos/métodos
2.
Methods ; 230: 59-67, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39047926

RESUMEN

Most bacterial, plant and fungal cells possess at their surface a protective layer called the cell wall, conferring strength, plasticity and rigidity to withstand the osmotic pressure. This molecular barrier is crucial for pathogenic microorganisms, as it protects the cell from the local environment and often constitutes the first structural component encountered in the host-pathogen interaction. In pathogenic molds and yeasts, the cell wall constitutes the main target for the development of clinically-relevant antifungal drugs. In the past decade, solid-state NMR has emerged as a powerful analytical technique to investigate the molecular organization of microbial cell walls in the context of intact cells. 13C NMR chemical shift is an exquisite source of information to identify the polysaccharides present in the cell wall, and two-dimensional 13C-13C correlation experiments provide an efficient tool to rapidly access the polysaccharide composition in whole cells. Here we investigate the use of the adiabatic DREAM (for dipolar recoupling enhancement through amplitude modulation) recoupling scheme to improve solid-state NMR analysis of polysaccharides in intact cells. We demonstrate the advantages of two-dimensional 13C-13C experiments using the DREAM recoupling scheme. We report the spectral editing of polysaccharide signals by varying the radio-frequency carrier position. We provide practical considerations for the implementation of DREAM experiments to characterize polysaccharides in whole cells. We demonstrate the approach on intact fungal cells of Neurospora crassa and Aspergillus fumigatus, a model and a pathogenic filamentous fungus, respectively. The approach could be envisioned to efficiently reduce the spectral crowding of more complex cell surfaces, such as cell wall and peptidoglycan in bacteria.

3.
Biomol NMR Assign ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38907837

RESUMEN

Signalosomes are high-order protein machineries involved in complex mechanisms controlling regulated immune defense and cell death execution. The immune response is initiated by the recognition of exogeneous or endogenous signals, triggering the signalosome assembly process. The final step of signalosome fate often involves membrane-targeting and activation of pore-forming execution domains, leading to membrane disruption and ultimately cell death. Such cell death-inducing domains have been thoroughly characterized in plants, mammals and fungi, notably for the fungal cell death execution protein domain HeLo. However, little is known on the mechanisms of signalosome-based immune response in bacteria, and the conformation of cell death executors in bacterial signalosomes is still poorly characterized. We recently uncovered the existence of NLR signalosomes in various multicellular bacteria and used genome mining approaches to identify putative cell death executors in Streptomyces olivochromogenes. These proteins contain a C-terminal amyloid domain involved in signal transmission and a N-terminal domain, termed BELL for Bacteria analogous to fungal HeLL (HeLo-like), presumably responsible for membrane-targeting, pore-forming and cell death execution. In the present study, we report the high yield expression of S. olivochromogenes BELL2 and its characterization by solution NMR spectroscopy. BELL is folded in solution and we report backbone and sidechain assignments. We identified five α-helical secondary structure elements and a folded core much smaller than its fungal homolog HeLo. This study constitutes the first step toward the NMR investigation of the full-length protein assembly and its membrane targeting.

4.
J Am Chem Soc ; 146(12): 8164-8178, 2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38476076

RESUMEN

Side-chain motions play an important role in understanding protein structure, dynamics, protein-protein, and protein-ligand interactions. However, our understanding of protein side-chain dynamics is currently limited by the lack of analytical tools. Here, we present a novel analytical framework employing experimental nuclear magnetic resonance (NMR) relaxation measurements at atomic resolution combined with molecular dynamics (MD) simulation to characterize with a high level of detail the methyl side-chain dynamics in insoluble protein assemblies, using amyloid fibrils formed by the prion HET-s. We use MD simulation to interpret experimental results, where rotameric hops, including methyl group rotation and χ1/χ2 rotations, cannot be completely described with a single correlation time but rather sample a broad distribution of correlation times, resulting from continuously changing local structure in the fibril. Backbone motion similarly samples a broad range of correlation times, from ∼100 ps to µs, although resulting from mostly different dynamic processes; nonetheless, we find that the backbone is not fully decoupled from the side-chain motion, where changes in side-chain dynamics influence backbone motion and vice versa. While the complexity of side-chain motion in protein assemblies makes it very challenging to obtain perfect agreement between experiment and simulation, our analytical framework improves the interpretation of experimental dynamics measurements for complex protein assemblies.


Asunto(s)
Simulación de Dinámica Molecular , Priones , Espectroscopía de Resonancia Magnética/métodos , Amiloide , Resonancia Magnética Nuclear Biomolecular
5.
Nat Commun ; 15(1): 486, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38212334

RESUMEN

The transactive response DNA-binding protein-43 (TDP-43) is a multi-facet protein involved in phase separation, RNA-binding, and alternative splicing. In the context of neurodegenerative diseases, abnormal aggregation of TDP-43 has been linked to amyotrophic lateral sclerosis and frontotemporal lobar degeneration through the aggregation of its C-terminal domain. Here, we report a cryo-electron microscopy (cryo-EM)-based structural characterization of TDP-43 fibrils obtained from the full-length protein. We find that the fibrils are polymorphic and contain three different amyloid structures. The structures differ in the number and relative orientation of the protofilaments, although they share a similar fold containing an amyloid key motif. The observed fibril structures differ from previously described conformations of TDP-43 fibrils and help to better understand the structural landscape of the amyloid fibril structures derived from this protein.


Asunto(s)
Esclerosis Amiotrófica Lateral , Degeneración Lobar Frontotemporal , Humanos , Amiloide/metabolismo , Microscopía por Crioelectrón , Proteínas Amiloidogénicas , Degeneración Lobar Frontotemporal/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/metabolismo
6.
Commun Biol ; 6(1): 1075, 2023 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-37865695

RESUMEN

Hfq is a pleitropic actor that serves as stress response and virulence factor in the bacterial cell. To execute its multiple functions, Hfq assembles into symmetric torus-shaped hexamers. Extending outward from the hexameric core, Hfq presents a C-terminal region, described as intrinsically disordered in solution. Many aspects of the role and the structure of this region remain unclear. For instance, in its truncated form it can promote amyloid-like filament assembly. Here, we show that a minimal 11-residue motif at the C-terminal end of Hfq assembles into filaments with amyloid characteristics. Our data suggest that the full-length Hfq in its filamentous state contains a similar molecular fingerprint than that of the short ß-strand peptide, and that the Sm-core structure is not affected by filament formation. Hfq proteins might thus co-exist in two forms in vivo, either as isolated, soluble hexamers or as self-assembled hexamers through amyloid-reminiscent interactions, modulating Hfq cellular functions.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Péptidos beta-Amiloides/metabolismo , Unión Proteica , Proteína de Factor 1 del Huésped/genética , Proteína de Factor 1 del Huésped/metabolismo
7.
NPJ Biofilms Microbiomes ; 9(1): 68, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37739955

RESUMEN

Biofilms are bacterial communities that result from a cell differentiation process leading to the secretion of an extracellular matrix (ECM) by part of the population. In Bacillus subtilis, the main protein component of the ECM is TasA, which forms a fiber-based scaffold that confers structure to the ECM. The N-terminal half of TasA is strongly conserved among Bacillus species and contains a protein domain, the rigid core (RcTasA), which is critical for the structural and functional properties of the recombinant protein. In this study, we demonstrate that recombinantly purified RcTasA in vitro retains biochemical properties previously observed for the entire protein. Further analysis of the RcTasA amino acid sequence revealed two aggregation-prone stretches and a region of imperfect amino acid repeats, which are known to contribute to functional amyloid assembly. Biochemical characterization of these stretches found in RcTasA revealed their amyloid-like capacity in vitro, contributing to the amyloid nature of RcTasA. Moreover, the study of the imperfect amino acid repeats revealed the critical role of residues D64, K68 and D69 in the structural function of TasA. Experiments with versions of TasA carrying the substitutions D64A and K68AD69A demonstrated a partial loss of function of the protein either in the assembly of the ECM or in the stability of the core and amyloid-like properties. Taken together, our findings allow us to better understand the polymerization process of TasA during biofilm formation and provide knowledge into the sequence determinants that promote the molecular behavior of protein filaments in bacteria.


Asunto(s)
Proteínas Amiloidogénicas , Bacillus subtilis , Bacillus subtilis/genética , Proteínas Amiloidogénicas/genética , Aminoácidos , Biopelículas , Matriz Extracelular
8.
Front Mol Biosci ; 10: 1148302, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065450

RESUMEN

Aberrant aggregation of the transactive response DNA-binding protein (TDP-43) is associated with several lethal neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal dementia. Cytoplasmic neuronal inclusions of TDP-43 are enriched in various fragments of the low-complexity C-terminal domain and are associated with different neurotoxicity. Here we dissect the structural basis of TDP-43 polymorphism using magic-angle spinning solid-state NMR spectroscopy in combination with electron microscopy and Fourier-transform infrared spectroscopy. We demonstrate that various low-complexity C-terminal fragments, namely TDP-13 (TDP-43300-414), TDP-11 (TDP-43300-399), and TDP-10 (TDP-43314-414), adopt distinct polymorphic structures in their amyloid fibrillar state. Our work demonstrates that the removal of less than 10% of the low-complexity sequence at N- and C-termini generates amyloid fibrils with comparable macroscopic features but different local structural arrangement. It highlights that the assembly mechanism of TDP-43, in addition to the aggregation of the hydrophobic region, is also driven by complex interactions involving low-complexity aggregation-prone segments that are a potential source of structural polymorphism.

9.
Proc Natl Acad Sci U S A ; 120(6): e2212003120, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36719915

RESUMEN

While establishing an invasive infection, the dormant conidia of Aspergillus fumigatus transit through swollen and germinating stages, to form hyphae. During this morphotype transition, the conidial cell wall undergoes dynamic remodeling, which poses challenges to the host immune system and antifungal drugs. However, such cell wall reorganization during conidial germination has not been studied so far. Here, we explored the molecular rearrangement of Aspergillus fumigatus cell wall polysaccharides during different stages of germination. We took advantage of magic-angle spinning NMR to investigate the cell wall polysaccharides, without employing any destructive method for sample preparation. The breaking of dormancy was associated with a significant change in the molar ratio between the major polysaccharides ß-1,3-glucan and α-1,3-glucan, while chitin remained equally abundant. The use of various polarization transfers allowed the detection of rigid and mobile polysaccharides; the appearance of mobile galactosaminogalactan was a molecular hallmark of germinating conidia. We also report for the first time highly abundant triglyceride lipids in the mobile matrix of conidial cell walls. Water to polysaccharides polarization transfers revealed an increased surface exposure of glucans during germination, while chitin remained embedded deeper in the cell wall, suggesting a molecular compensation mechanism to keep the cell wall rigidity. We complement the NMR analysis with confocal and atomic force microscopies to explore the role of melanin and RodA hydrophobin on the dormant conidial surface. Exemplified here using Aspergillus fumigatus as a model, our approach provides a powerful tool to decipher the molecular remodeling of fungal cell walls during their morphotype switching.


Asunto(s)
Aspergillus fumigatus , Proteínas Fúngicas , Aspergillus fumigatus/metabolismo , Esporas Fúngicas/metabolismo , Proteínas Fúngicas/metabolismo , Polisacáridos/metabolismo , Quitina/metabolismo , Glucanos/metabolismo , Pared Celular/metabolismo
10.
Biophys J ; 122(11): 2192-2202, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-36582138

RESUMEN

Remorins are a family of multigenic plasma membrane phosphoproteins involved in biotic and abiotic plant interaction mechanisms, partnering in molecular signaling cascades. Signaling activity of remorins depends on their phosphorylation states and subsequent clustering into nanosized membrane domains. The presence of a coiled-coil domain and a C-terminal domain is crucial to anchor remorins to negatively charged membrane domains; however, the exact role of the N-terminal intrinsically disordered domain (IDD) on protein clustering and lipid interactions is largely unknown. Here, we combine chemical biology and imaging approaches to study the partitioning of group 1 remorin into anionic model membranes mimicking the inner leaflet of the plant plasma membrane. Using reconstituted membranes containing a mix of saturated and unsaturated phosphatidylcholine, phosphatidylinositol phosphates, and sterol, we investigate the clustering of remorins to the membrane and monitor the formation of nanosized membrane domains. REM1.3 promoted membrane nanodomain organization on the exposed external leaflet of both spherical lipid vesicles and flat supported lipid bilayers. Our results reveal that REM1.3 drives a mechanism allowing lipid reorganization, leading to the formation of remorin-enriched nanodomains. Phosphorylation of the N-terminal IDD by the calcium protein kinase CPK3 influences this clustering and can lead to the formation of smaller and more disperse domains. Our work reveals the phosphate-dependent involvement of the N-terminal IDD in the remorin-membrane interaction process by driving structural rearrangements at lipid-water interfaces.


Asunto(s)
Proteínas Portadoras , Proteínas de Plantas , Proteínas Portadoras/metabolismo , Proteínas de Plantas/química , Membrana Celular/metabolismo , Plantas/metabolismo , Membrana Dobles de Lípidos/metabolismo
11.
Commun Biol ; 5(1): 1202, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36352173

RESUMEN

Structural investigations of amyloid fibrils often rely on heterologous bacterial overexpression of the protein of interest. Due to their inherent hydrophobicity and tendency to aggregate as inclusion bodies, many amyloid proteins are challenging to express in bacterial systems. Cell-free protein expression is a promising alternative to classical bacterial expression to produce hydrophobic proteins and introduce NMR-active isotopes that can improve and speed up the NMR analysis. Here we implement the cell-free synthesis of the functional amyloid prion HET-s(218-289). We present an interesting case where HET-s(218-289) directly assembles into infectious fibril in the cell-free expression mixture without the requirement of denaturation procedures and purification. By introducing tailored 13C and 15N isotopes or CF3 and 13CH2F labels at strategic amino-acid positions, we demonstrate that cell-free synthesized amyloid fibrils are readily amenable to high-resolution magic-angle spinning NMR at sub-milligram quantity.


Asunto(s)
Amiloide , Priones , Amiloide/química , Espectroscopía de Resonancia Magnética/métodos , Proteínas Amiloidogénicas , Imagen por Resonancia Magnética
12.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35955871

RESUMEN

Hfq is a pleiotropic regulator that mediates several aspects of bacterial RNA metabolism. The protein notably regulates translation efficiency and RNA decay in Gram-negative bacteria, usually via its interaction with small regulatory RNAs. Previously, we showed that the Hfq C-terminal region forms an amyloid-like structure and that these fibrils interact with membranes. The immediate consequence of this interaction is a disruption of the membrane, but the effect on Hfq structure was unknown. To investigate details of the mechanism of interaction, the present work uses different in vitro biophysical approaches. We show that the Hfq C-terminal region influences membrane integrity and, conversely, that the membrane specifically affects the amyloid assembly. The reported effect of this bacterial master regulator on membrane integrity is discussed in light of the possible consequence on small regulatory RNA-based regulation.


Asunto(s)
Proteínas de Escherichia coli , ARN Bacteriano , Proteínas Amiloidogénicas/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteína de Factor 1 del Huésped/genética , Proteína de Factor 1 del Huésped/metabolismo , ARN Bacteriano/metabolismo
13.
J Biomol NMR ; 75(10-12): 417-427, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34813018

RESUMEN

Solid-state NMR spectroscopy is a powerful technique to study insoluble and non-crystalline proteins and protein complexes at atomic resolution. The development of proton (1H) detection at fast magic-angle spinning (MAS) has considerably increased the analytical capabilities of the technique, enabling the acquisition of 1H-detected fingerprint experiments in few hours. Here an approach based on double-quantum (DQ) 13C spectroscopy, detected on 1H, is proposed for fast MAS regime (> 60 kHz) to perform the sequential assignment of insoluble proteins of small size, without any specific deuteration requirement. By combining two three-dimensional 1H detected experiments correlating a 13C DQ dimension respectively to its intra-residue and sequential 15 N-1H pairs, a sequential walk through DQ (Ca + CO) resonance is obtained. The approach takes advantage of fast MAS to achieve an efficient sensitivity and the addition of a DQ dimension provides spectral features useful for the resonance assignment process.


Asunto(s)
Proteínas , Protones , Espectroscopía de Resonancia Magnética , Resonancia Magnética Nuclear Biomolecular
14.
Front Mol Neurosci ; 14: 670513, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276304

RESUMEN

Infectious proteins or prions are a remarkable class of pathogens, where pathogenicity and infectious state correspond to conformational transition of a protein fold. The conformational change translates into the formation by the protein of insoluble amyloid aggregates, associated in humans with various neurodegenerative disorders and systemic protein-deposition diseases. The prion principle, however, is not limited to pathogenicity. While pathological amyloids (and prions) emerge from protein misfolding, a class of functional amyloids has been defined, consisting of amyloid-forming domains under natural selection and with diverse biological roles. Although of great importance, prion amyloid structures remain challenging for conventional structural biology techniques. Solid-state nuclear magnetic resonance (SSNMR) has been preferentially used to investigate these insoluble, morphologically heterogeneous aggregates with poor crystallinity. SSNMR methods have yielded a wealth of knowledge regarding the fundamentals of prion biology and have helped to solve the structures of several prion and prion-like fibrils. Here, we will review pathological and functional amyloid structures and will discuss some of the obtained structural models. We will finish the review with a perspective on integrative approaches combining solid-state NMR, electron paramagnetic resonance and cryo-electron microscopy, which can complement and extend our toolkit to structurally explore various facets of prion biology.

15.
Environ Microbiol ; 23(10): 6104-6121, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34288352

RESUMEN

Fungi are considered to cause grapevine trunk diseases such as esca that result in wood degradation. For instance, the basidiomycete Fomitiporia mediterranea (Fmed) is overabundant in white rot, a key type of wood-necrosis associated with esca. However, many bacteria colonize the grapevine wood too, including the white rot. In this study, we hypothesized that bacteria colonizing grapevine wood interact, possibly synergistically, with Fmed and enhance the fungal ability to degrade wood. We isolated 237 bacterial strains from esca-affected grapevine wood. Most of them belonged to the families Xanthomonadaceae and Pseudomonadaceae. Some bacterial strains that degrade grapevine-wood components such as cellulose and hemicellulose did not inhibit Fmed growth in vitro. We proved that the fungal ability to degrade wood can be strongly influenced by bacteria inhabiting the wood. This was shown with a cellulolytic and xylanolytic strain of the Paenibacillus genus, which displays synergistic interaction with Fmed by enhancing the degradation of wood structures. Genome analysis of this Paenibacillus strain revealed several gene clusters such as those involved in the expression of carbohydrate-active enzymes, xylose utilization and vitamin metabolism. In addition, certain other genetic characteristics of the strain allow it to thrive as an endophyte in grapevine and influence the wood degradation by Fmed. This suggests that there might exist a synergistic interaction between the fungus Fmed and the bacterial strain mentioned above, enhancing grapevine wood degradation. Further step would be to point out its occurrence in mature grapevines to promote esca disease development.


Asunto(s)
Basidiomycota , Vitis , Bacterias/genética , Humanos , Enfermedades de las Plantas/microbiología , Vitis/microbiología , Madera/microbiología
16.
J Colloid Interface Sci ; 594: 857-863, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33794407

RESUMEN

Supramolecular chemistry has garnered important interest in recent years toward improving therapeutic efficacy via drug delivery approaches. Although self-assemblies have been deeply investigated, the design of novel drugs leveraging supramolecular chemistry is less known. In this contribution, we show that a Low Molecular Weight Gel (LMWG) can elicit cancer cell apoptosis. This biological effect results from the unique supramolecular properties of a bolaamphiphile-based gelator, which allow for strong interaction with the lipid membrane. This novel supramolecular-drug paradigm opens up new possibilities for therapeutic applications targeting membrane lipids.


Asunto(s)
Sistemas de Liberación de Medicamentos , Furanos , Geles , Piridonas
17.
Plant Physiol ; 185(3): 632-649, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33793872

RESUMEN

REMORINs (REMs) are a plant-specific protein family, proposed regulators of membrane-associated molecular assemblies and well-established markers of plasma membrane nanodomains. REMs play a diverse set of functions in plant interactions with pathogens and symbionts, responses to abiotic stresses, hormone signaling and cell-to-cell communication. In this review, we highlight the established and more putative roles of REMs throughout the literature. We discuss the physiological functions of REMs, the mechanisms underlying their nanodomain-organization and their putative role as regulators of nanodomain-associated molecular assemblies. Furthermore, we discuss how REM phosphorylation may regulate their functional versatility. Overall, through data-mining and comparative analysis of the literature, we suggest how to further study the molecular mechanisms underpinning the functions of REMs.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Microdominios de Membrana/metabolismo , Proteínas de Plantas/metabolismo
18.
Chem Rev ; 121(4): 2545-2647, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33543942

RESUMEN

Protein misfolding and aggregation is observed in many amyloidogenic diseases affecting either the central nervous system or a variety of peripheral tissues. Structural and dynamic characterization of all species along the pathways from monomers to fibrils is challenging by experimental and computational means because they involve intrinsically disordered proteins in most diseases. Yet understanding how amyloid species become toxic is the challenge in developing a treatment for these diseases. Here we review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aß, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research, respectively, for many years.


Asunto(s)
Amiloide/química , Amiloide/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/química , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Modelos Moleculares , Enfermedades Neurodegenerativas/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Agregación Patológica de Proteínas , Deficiencias en la Proteostasis/metabolismo , Superóxido Dismutasa-1/química , Superóxido Dismutasa-1/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Proteínas tau/química , Proteínas tau/metabolismo
19.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443172

RESUMEN

Neurodegenerative disorders are frequently associated with ß-sheet-rich amyloid deposits. Amyloid-forming proteins can aggregate under different structural conformations known as strains, which can exhibit a prion-like behavior and distinct pathophenotypes. Precise molecular determinants defining strain specificity and cross-strain interactions (cross-seeding) are currently unknown. The HET-s prion protein from the fungus Podospora anserina represents a model system to study the fundamental properties of prion amyloids. Here, we report the amyloid prion structure of HELLF, a distant homolog of the model prion HET-s. We find that these two amyloids, sharing only 17% sequence identity, have nearly identical ß-solenoid folds but lack cross-seeding ability in vivo, indicating that prion specificity can differ in extremely similar amyloid folds. We engineer the HELLF sequence to explore the limits of the sequence-to-fold conservation and to pinpoint determinants of cross-seeding and prion specificity. We find that amyloid fold conservation occurs even at an exceedingly low level of identity to HET-s (5%). Next, we derive a HELLF-based sequence, termed HEC, able to breach the cross-seeding barrier in vivo between HELLF and HET-s, unveiling determinants controlling cross-seeding at residue level. These findings show that virtually identical amyloid backbone structures might not be sufficient for cross-seeding and that critical side-chain positions could determine the seeding specificity of an amyloid fold. Our work redefines the conceptual boundaries of prion strain and sheds light on key molecular features concerning an important class of pathogenic agents.


Asunto(s)
Amiloide/química , Amiloide/metabolismo , Priones/metabolismo , Secuencia de Aminoácidos/genética , Amiloide/ultraestructura , Proteínas Amiloidogénicas/química , Proteínas Amiloidogénicas/metabolismo , Secuencia Conservada/genética , Proteínas Fúngicas/metabolismo , Modelos Biológicos , Podospora/genética , Agregado de Proteínas/fisiología , Pliegue de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA