Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1238853, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37664121

RESUMEN

Metal recycling is essential for strengthening a circular economy. Microbial leaching (bioleaching) is an economical and environmentally friendly technology widely used to extract metals from insoluble ores or secondary resources such as dust, ashes, and slags. On the other hand, microbial electrolysis cells (MECs) would offer an energy-efficient application for recovering valuable metals from an aqueous solution. In this study, we investigated a MEC for Zn recovery from metal-laden bioleachate for the first time by applying a constant potential of -100 mV vs. Ag/AgCl (3 M NaCl) on a synthetic wastewater-treating bioanode. Zn was deposited onto the cathode surface with a recovery efficiency of 41 ± 13% and an energy consumption of 2.55 kWh kg-1. For comparison, Zn recovery from zinc sulfate solution resulted in a Zn recovery efficiency of 100 ± 0% and an energy consumption of 0.70 kWh kg-1. Furthermore, selective metal precipitation of the bioleachate was performed. Individual metals were almost completely precipitated from the bioleachate at pH 5 (Al), pH 7 (Zn and Fe), and pH 9 (Mg and Mn).

2.
Front Bioeng Biotechnol ; 10: 972653, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159676

RESUMEN

Carbon capture and utilization has been proposed as one strategy to combat global warming. Microbial electrolysis cells (MECs) combine the biological conversion of carbon dioxide (CO2) with the formation of valuable products such as methane. This study was motivated by the surprising gap in current knowledge about the utilization of real exhaust gas as a CO2 source for methane production in a fully biocatalyzed MEC. Therefore, two steel mill off-gases differing in composition were tested in a two-chamber MEC, consisting of an organic substrate-oxidizing bioanode and a methane-producing biocathode, by applying a constant anode potential. The methane production rate in the MEC decreased immediately when steel mill off-gas was tested, which likely inhibited anaerobic methanogens in the presence of oxygen. However, methanogenesis was still ongoing even though at lower methane production rates than with pure CO2. Subsequently, pure CO2 was studied for methanation, and the cathodic biofilm successfully recovered from inhibition reaching a methane production rate of 10.8 L m-2d-1. Metagenomic analysis revealed Geobacter as the dominant genus forming the anodic organic substrate-oxidizing biofilms, whereas Methanobacterium was most abundant at the cathodic methane-producing biofilms.

3.
Biosensors (Basel) ; 11(6)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073192

RESUMEN

Sustainable technologies for energy production and storage are currently in great demand. Bioelectrochemical systems (BESs) offer promising solutions for both. Several attempts have been made to improve carbon felt electrode characteristics with various pretreatments in order to enhance performance. This study was motivated by gaps in current knowledge of the impact of pretreatments on the enrichment and microbial composition of bioelectrochemical systems. Therefore, electrodes were treated with poly(neutral red), chitosan, or isopropanol in a first step and then fixed in microbial electrolysis cells (MECs). Four MECs consisting of organic substance-degrading bioanodes and methane-producing biocathodes were set up and operated in batch mode by controlling the bioanode at 400 mV vs. Ag/AgCl (3M NaCl). After 1 month of operation, Enterococcus species were dominant microorganisms attached to all bioanodes and independent of electrode pretreatment. However, electrode pretreatments led to a decrease in microbial diversity and the enrichment of specific electroactive genera, according to the type of modification used. The MEC containing isopropanol-treated electrodes achieved the highest performance due to presence of both Enterococcus and Geobacter. The obtained results might help to select suitable electrode pretreatments and support growth conditions for desired electroactive microorganisms, whereby performance of BESs and related applications, such as BES-based biosensors, could be enhanced.


Asunto(s)
Fuentes de Energía Bioeléctrica , Biopelículas , Fibra de Carbono , Electrodos , Carbono , Electrólisis , Geobacter
4.
J Environ Manage ; 280: 111734, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33288317

RESUMEN

Hazardous waste disposal via incineration generates a substantial amount of ashes and slags which pose an environmental risk due to their toxicity. Currently, these residues are deposited in landfills with loss of potentially recyclable raw material. In this study, the use of acidophilic bioleaching bacteria (Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum ferrooxidans) as an environmentally friendly, efficient strategy for the recovery of valuable metals from incineration residues was investigated. Zinc, Cobalt, Copper, and Manganese from three different incineration residues were bio-extracted up to 100% using A. ferrooxidans under ferrous iron oxidation. The other metals showed lower leaching efficiencies based on the type of culture used. Sulfur-oxidizing cultures A. ferrooxidans and A. thiooxidans, containing sulfur as the sole substrate, expressed a significantly lower leaching efficiency (up to 50%). According to ICP-MS, ashes and slags contained Fe, Zn, Cu, Mn, Cr, Cd, and Ni in economically attractive concentrations between 0.2 and 75 mg g-1. Compared to conventional hydrometallurgical and pyrometallurgical processes, our biological approach provides many advantages such as: the use of a limited amount of used strong acids (H2SO4 or HCl), recycling operations at lower temperatures (~30 °C) and no emission of toxic gases during combustion (i.e., dioxins and furans).


Asunto(s)
Acidithiobacillus , Incineración , Bacterias , Hierro , Oxidación-Reducción , Azufre
5.
Biotechnol Adv ; 40: 107520, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31981600

RESUMEN

Competitive sustainable production in industry demands new and better biocatalysts, optimized bioprocesses and cost-effective product recovery. Our review sheds light on the progress made for the individual steps towards these goals, starting with the discovery of new enzymes and their corresponding genes. The enzymes are subsequently engineered to improve their performance, combined in reaction cascades to expand the reaction scope and integrated in whole cells to provide an optimal environment for the bioconversion. Strain engineering using synthetic biology methods tunes the host for production, reaction design optimizes the reaction conditions and downstream processing ensures the efficient recovery of commercially viable products. Selected examples illustrate how modified enzymes can revolutionize future-oriented applications ranging from the bioproduction of bulk-, specialty- and fine chemicals, active pharmaceutical ingredients and carbohydrates, over the conversion of the greenhouse-gas CO2 into valuable products and biocontrol in agriculture, to recycling of synthetic polymers and recovery of precious metals.


Asunto(s)
Biología Sintética , Biocatálisis , Enzimas , Compuestos Orgánicos
6.
Chembiochem ; 20(9): 1196-1205, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30609239

RESUMEN

Microbial electrosynthetic cells containing Methylobacterium extorquens were studied for the reduction of CO2 to formate by direct electron injection and redox mediator-assisted approaches, with CO2 as the sole carbon source. The formation of a biofilm on a carbon felt (CF) electrode was achieved while applying a constant potential of -0.75 V versus Ag/AgCl under CO2 -saturated conditions. During the biofilm growth period, continuous H2 evolution was observed. The long-term performance for CO2 reduction of the biofilm with and without neutral red as a redox mediator was studied by an applied potential of -0.75 V versus Ag/AgCl. The neutral red was introduced into the systems in two different ways: homogeneous (dissolved in solution) and heterogeneous (electropolymerized onto the working electrode). The heterogeneous approach was investigated in the microbial system, for the first time, where the CF working electrode was coated with poly(neutral red) by the oxidative electropolymerization thereof. The formation of poly(neutral red) was characterized by spectroscopic techniques. During long-term electrolysis up to 17 weeks, the formation of formate was observed continuously with an average Faradaic efficiency of 4 %. With the contribution of neutral red, higher formate accumulation was observed. Moreover, the microbial electrosynthetic cell was characterized by means of electrochemical impedance spectroscopy to obtain more information on the CO2 reduction mechanism.


Asunto(s)
Dióxido de Carbono/metabolismo , Rojo Neutro/metabolismo , Biocatálisis , Biopelículas , Técnicas Electroquímicas/métodos , Formiatos/metabolismo , Methylobacterium extorquens/fisiología , Rojo Neutro/química , Oxidación-Reducción , Polimerizacion
7.
ChemSusChem ; 10(1): 226-233, 2017 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-27792284

RESUMEN

We present a study on a microbial electrolysis cell with methanogenic microorganisms adapted to reduce CO2 to CH4 with the direct injection of electrons and without the artificial addition of H2 or an additional carbon source except gaseous CO2 . This is a new approach in comparison to previous work in which both bicarbonate and gaseous CO2 served as the carbon source. The methanogens used are known to perform well in anaerobic reactors and metabolize H2 and CO2 to CH4 and water. This study shows the biofilm formation of those microorganisms on a carbon felt electrode and the long-term performance for CO2 reduction to CH4 using direct electrochemical reduction. CO2 reduction is performed simply by electron uptake with gaseous CO2 as the sole carbon source in a defined medium. This "electrometabolism" in such microbial electrolysis cells depends strongly on the potential applied as well as on the environmental conditions. We investigated the performance using different adaption mechanisms and a constant potential of -700 mV vs. Ag/AgCl for CH4 generation at 30-35 °C. The experiments were performed by using two-compartment electrochemical cells. Production rates with Faradaic efficiencies of around 22 % were observed.


Asunto(s)
Fuentes de Energía Bioeléctrica/microbiología , Dióxido de Carbono/metabolismo , Metano/metabolismo , Biopelículas , Catálisis , Electroquímica , Transporte de Electrón
8.
ChemSusChem ; 9(6): 631-5, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26890322

RESUMEN

We present results for direct bio-electrocatalytic reduction of CO2 to C1 products using electrodes with immobilized enzymes. Enzymatic reduction reactions are well known from biological systems where CO2 is selectively reduced to formate, formaldehyde, or methanol at room temperature and ambient pressure. In the past, the use of such enzymatic reductions for CO2 was limited due to the necessity of a sacrificial co-enzyme, such as nicotinamide adenine dinucleotide (NADH), to supply electrons and the hydrogen equivalent. The method reported here in this paper operates without the co-enzyme NADH by directly injecting electrons from electrodes into immobilized enzymes. We demonstrate the immobilization of formate, formaldehyde, and alcohol dehydrogenases on one-and-the-same electrode for direct CO2 reduction. Carbon felt is used as working electrode material. An alginate-silicate hybrid gel matrix is used for the immobilization of the enzymes on the electrode. Generation of methanol is observed for the six-electron reduction with Faradaic efficiencies of around 10%. This method of immobilization of enzymes on electrodes offers the opportunity for electrochemical application of enzymatic electrodes to many reactions in which a substitution of the expensive sacrificial co-enzyme NADH is desired.


Asunto(s)
Dióxido de Carbono/química , Electrodos , Enzimas Inmovilizadas/química , Metanol/química , Electrones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...