Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 8014, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049425

RESUMEN

Built structures increasingly dominate the Earth's landscapes; their surging mass is currently overtaking global biomass. We here assess built structures in the conterminous US by quantifying the mass of 14 stock-building materials in eight building types and nine types of mobility infrastructures. Our high-resolution maps reveal that built structures have become 2.6 times heavier than all plant biomass across the country and that most inhabited areas are mass-dominated by buildings or infrastructure. We analyze determinants of the material intensity and show that densely built settlements have substantially lower per-capita material stocks, while highest intensities are found in sparsely populated regions due to ubiquitous infrastructures. Out-migration aggravates already high intensities in rural areas as people leave while built structures remain - highlighting that quantifying the distribution of built-up mass at high resolution is an essential contribution to understanding the biophysical basis of societies, and to inform strategies to design more resource-efficient settlements and a sustainable circular economy.


Asunto(s)
Materiales de Construcción , Plantas , Humanos , Biomasa
2.
Data Brief ; 51: 109725, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37965617

RESUMEN

This dataset includes data on the embodied human appropriation of net primary production (eHANPP) associated with products derived from agriculture and forestry. The human appropriation of net primary production (HANPP) is an indicator of changes in the yearly availability of biomass energy from photosynthesis that remains available in terrestrial ecosystems after harvest, under current land use, compared to the net primary production of the potential natural vegetation. HANPP is an indicator of land-use intensity that is relevant for biodiversity and biogeochemical cycles. The eHANPP indicator allocates HANPP to products and allows tracing trade flows from origin (the country where production takes place) to consumption (the country where products are consumed), thereby underpinning research into the telecouplings in global land use. The datasets described in this article trace eHANPP associated with the bilateral trade flows between 222 countries. It covers 161 primary crops, 13 primary animal products and 4 primary forestry products, as well as the end uses of these products for the years 1986 to 2013.

3.
Nat Commun ; 14(1): 3898, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37400457

RESUMEN

Built structures, i.e. the patterns of settlements and transport infrastructures, are known to influence per-capita energy demand and CO2 emissions at the urban level. At the national level, the role of built structures is seldom considered due to poor data availability. Instead, other potential determinants of energy demand and CO2 emissions, primarily GDP, are more frequently assessed. We present a set of national-level indicators to characterize patterns of built structures. We quantify these indicators for 113 countries and statistically analyze the results along with final energy use and territorial CO2 emissions, as well as factors commonly included in national-level analyses of determinants of energy use and emissions. We find that these indicators are about equally important for predicting energy demand and CO2 emissions as GDP and other conventional factors. The area of built-up land per capita is the most important predictor, second only to the effect of GDP.

4.
Agron Sustain Dev ; 43(3): 39, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37200584

RESUMEN

European farm households will face increasingly challenging conditions in the coming decades due to climate change, as the frequency and severity of extreme weather events rise. This study assesses the complex interrelations between external framework conditions such as climate change or adjustments in the agricultural price and subsidy schemes with farmers' decision-making. As social aspects remain understudied drivers for agricultural decisions, we also consider value-based characteristics of farmers as internal factors relevant for decision-making. We integrate individual learning as response to extreme weather events into an agent-based model that simulates farmers' decision-making. We applied the model to a region in Eastern Austria that already experiences water scarcity and increasing drought risk from climate change and simulated three future scenarios to compare the effects of changes in socio-economic and climatic conditions. In a cross-comparison, we then investigated how farmers can navigate these changes through individual adaptation. The agricultural trajectories project a decline of active farms between -27 and -37% accompanied by a reduction of agricultural area between -20 and -30% until 2053. The results show that regardless of the scenario conditions, adaptation through learning moderates the decline in the number of active farms and farmland compared to scenarios without adaptive learning. However, adaptation increases the workload of farmers. This highlights the need for labor support for farms. Supplementary Information: The online version contains supplementary material available at 10.1007/s13593-023-00890-z.

5.
Data Brief ; 47: 108997, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36909013

RESUMEN

High-resolution maps of material stocks in buildings and infrastructures are of key importance for studies of societal resource use (social metabolism, circular economy, secondary resource potentials) as well as for transport studies and land system science. So far, such maps were only available for specific years but not in time series. Even for single years, data covering entire countries with high resolution, or using remote-sensing data are rare. Instead, they often have local extent (e.g., [1]), are lower resolution (e.g., [2]), or are based on other geospatial data (e.g., [3]). We here present data on the material stocks in three types of buildings (commercial and industrial, single- and multifamily houses) and three types of infrastructures (roads, railways, other infrastructures) for a 33-year time series for Austria at a spatial resolution of 30 m. The article also presents data on population and employment in Austria for the same time period, at the same spatial resolution. Data were derived with the same method applied in a recent study for Germany [4].

6.
Sci Total Environ ; 861: 160576, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36462656

RESUMEN

With ongoing global urbanization processes and consumption patterns increasingly recognized as key determinants of environmental change, a better understanding of the links between urban consumption and biodiversity loss is paramount. Here we quantify the global biodiversity footprint (BDF) of Vienna's (Austria) biomass consumption. We present a state-of-the-art product specific approach to (a) locate the production areas required for Vienna's consumption and map Vienna's BDF by (b) linking them with data taken from a previously published countryside Species-Area-Relationship (cSAR) model with a representation of land-use intensity. We found that food has the largest share in Vienna's BDF (58 %), followed by biomass for material applications (28 %) and bioenergy (13 %). The total BDF occurs predominantly within Austria and in its neighbouring countries, with ~20 % located outside Europe. Although the per capita biomass consumption in Vienna is above the global average, global and Viennese per capita BDFs are roughly equal, indicating that Vienna sources its products from high-yield regions with efficient production systems and comparatively low native species richness. We conclude that, among others, dietary changes offer a key leverage point for reducing the urban BDF, while expanding the use of biomass for material and energy use may increase the BDF and requires appropriate monitoring.


Asunto(s)
Biodiversidad , Urbanización , Ciudades , Biomasa , Austria
7.
Glob Ecol Biogeogr ; 32(6): 855-866, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38504954

RESUMEN

Aim: Land use is the most pervasive driver of biodiversity loss. Predicting its impact on species richness (SR) is often based on indicators of habitat loss. However, the degradation of habitats, especially through land-use intensification, also affects species. Here, we evaluate whether an integrative metric of land-use intensity, the human appropriation of net primary production, is correlated with the decline of SR in used landscapes across the globe. Location: Global. Time period: Present. Major taxa studied: Birds, mammals and amphibians. Methods: Based on species range maps (spatial resolution: 20 km × 20 km) and an area-of-habitat approach, we calibrated a "species-energy model" by correlating the SR of three groups of vertebrates with net primary production and biogeographical covariables in "wilderness" areas (i.e., those where available energy is assumed to be still at pristine levels). We used this model to project the difference between pristine SR and the SR corresponding to the energy remaining in used landscapes (i.e., SR loss expected owing to human energy extraction outside wilderness areas). We validated the projected species loss by comparison with the realized and impending loss reconstructed from habitat conversion and documented by national Red Lists. Results: Species-energy models largely explained landscape-scale variation of mapped SR in wilderness areas (adjusted R 2-values: 0.79-0.93). Model-based projections of SR loss were lower, on average, than reconstructed and documented ones, but the spatial patterns were correlated significantly, with stronger correlation in mammals (Pearson's r = 0.68) than in amphibians (r = 0.60) and birds (r = 0.57). Main conclusions: Our results suggest that the human appropriation of net primary production is a useful indicator of heterotrophic species loss in used landscapes, hence we recommend its inclusion in models based on species-area relationships to improve predictions of land-use-driven biodiversity loss.

8.
Glob Change Biol Bioenergy ; 14(3): 246-257, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35909989

RESUMEN

Forest-based mitigation strategies will play a pivotal role in achieving the rapid and deep net-emission reductions required to prevent catastrophic climate change. However, large disagreement prevails on how to forge forest-based mitigation strategies, in particular in regions where forests are currently growing in area and carbon density. Two opposing viewpoints prevail in the current discourse: (1) A widespread viewpoint, specifically in countries in the Global North, favours enhanced wood use, including bioenergy, for substitution of emissions-intensive products and processes. (2) Others instead focus on the biophysical, resource-efficiency and time-response advantages of forest conservation and restoration for carbon sequestration and biodiversity conservation, whilst often not explicitly specifying how much wood extraction can still safeguard these ecological benefits. We here argue for a new perspective in sustainable forest research that aims at forging "no-regret" forest-based climate change mitigation strategies. Based on the consideration of forest growth dynamics and the opportunity carbon cost associated with wood use, we suggest that, instead of taking (hypothetical) wood-for-fossil substitution as starting point in assessments of carbon implications of wood products and services, analyses should take the potential and desired carbon sequestration of forests as starting point and quantify sustainable yield potentials compatible with those carbon sequestration potentials. Such an approach explicitly addresses the possible benefits provided by forests as carbon sinks, brings research on the permanence and vulnerability of C-stocks in forests, of substitution effects, as well as explorations of demand-side strategies to the forefront of research and, in particular, aligns better with the urgency to find viable climate solutions.

9.
Sci Total Environ ; 851(Pt 2): 158198, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36028028

RESUMEN

The global livestock system puts increasing pressures on ecosystems. Studies analyzing the ecological impacts of livestock supply chains often explain this pressure by the increasing demand for animal products. Food regime theory proposes a more nuanced perspective: it explains livestock-related pressures on ecosystems by systemic changes along the supply chains of feed and animal products, notably the liberalization of agricultural trade. This study proposes a framework supporting empirical analyses of such claims by differentiating several steps of livestock supply chains. We reconstructed "trilateral" livestock supply chains linking feed production, livestock farming, and final consumption, based on the global flows of 161 feed and 13 animal products between 222 countries from 1986 to 2013. We used the embodied Human Appropriation of Net Primary Production (eHANPP) indicator to quantify pressures on ecosystems linked to these trilateral livestock supply chains. We find that livestock induced 65 % of agriculture's pressure on ecosystems, mostly through cattle grazing. Between 1986 and 2013, the fraction of livestock-related eHANPP that was traded internationally doubled from 7.1 % to 15.6 %. eHANPP related to the trade of feed was mostly linked to soybean imported for pig meat production, whereas eHANPP associated to traded animal products was mostly linked to cattle meat. eHANPP of traded animal products was lower but increased faster than eHANPP of feed trade. eHANPP was highest at the feed production level in South and North America, and at the consumption level in Eastern Asia. In Northern Asia and Eastern Europe, eHANPP was lowest at the animal products production level. In Western Europe, the eHANPP was equal at the animal products production and consumption levels. Our findings suggest that options to reduce livestock's pressures on ecosystems exist at all levels of the supply chain, especially by reducing the production and consumption in high-consuming countries and regulating international supply chains.


Asunto(s)
Ecosistema , Ganado , Animales , Bovinos , Agricultura , Alimentación Animal/análisis , Carne/análisis
10.
MethodsX ; 9: 101654, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35402170

RESUMEN

International datasets on economy-wide material flows currently fail to comprehensively cover the quantitatively most important materials and countries, to provide centennial coverage and to differentiate between processing stages. These data gaps hamper research and policy on resource use. Herein, we present and document the data processing and compilation procedures applied to develop a novel economy-wide database of primary stock-building material flows systematically covering 177 countries from 1900- 2016. The main methodological novelty is the consistent integration of material flow accounting and analysis principles and thereby addresses limitations in terms of transparency, data quality and uncertainty treatment. The database systematically discerns four processing stages from raw materials extraction, to processing of raw and semi-finished products, to manufacturing of stock-building materials. Included materials are concrete, asphalt, bricks, timber products, paper, iron & steel, aluminium, copper, lead, zinc, other metals, plastics, container and flat glass. The database is compiled using international and national data sources, using a transparent and consistent 10-step procedure, as well as a systematic uncertainty assessment. Apart from a detailed documentation of the data compilation, validations of the database using data from previous studies and additional uncertainty estimates are presented. • Systematically compiled historical database of primary stock-building material flows for 177 countries. • Consistent integration of economy-wide material flow accounting and detailed material flow analysis principles. • Methodological enhancements in terms of transparency, data quality and uncertainty treatment.

12.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35131937

RESUMEN

Land use is central to addressing sustainability issues, including biodiversity conservation, climate change, food security, poverty alleviation, and sustainable energy. In this paper, we synthesize knowledge accumulated in land system science, the integrated study of terrestrial social-ecological systems, into 10 hard truths that have strong, general, empirical support. These facts help to explain the challenges of achieving sustainability in land use and thus also point toward solutions. The 10 facts are as follows: 1) Meanings and values of land are socially constructed and contested; 2) land systems exhibit complex behaviors with abrupt, hard-to-predict changes; 3) irreversible changes and path dependence are common features of land systems; 4) some land uses have a small footprint but very large impacts; 5) drivers and impacts of land-use change are globally interconnected and spill over to distant locations; 6) humanity lives on a used planet where all land provides benefits to societies; 7) land-use change usually entails trade-offs between different benefits-"win-wins" are thus rare; 8) land tenure and land-use claims are often unclear, overlapping, and contested; 9) the benefits and burdens from land are unequally distributed; and 10) land users have multiple, sometimes conflicting, ideas of what social and environmental justice entails. The facts have implications for governance, but do not provide fixed answers. Instead they constitute a set of core principles which can guide scientists, policy makers, and practitioners toward meeting sustainability challenges in land use.


Asunto(s)
Agricultura , Conservación de los Recursos Naturales/métodos , Ecosistema , Humanos , Energía Renovable , Cambio Social
13.
Nat Commun ; 13(1): 615, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35105884

RESUMEN

Land-use has transformed ecosystems over three quarters of the terrestrial surface, with massive repercussions on biodiversity. Land-use intensity is known to contribute to the effects of land-use on biodiversity, but the magnitude of this contribution remains uncertain. Here, we use a modified countryside species-area model to compute a global account of the impending biodiversity loss caused by current land-use patterns, explicitly addressing the role of land-use intensity based on two sets of intensity indicators. We find that land-use entails the loss of ~15% of terrestrial vertebrate species from the average 5 × 5 arcmin-landscape outside remaining wilderness areas and ~14% of their average native area-of-habitat, with a risk of global extinction for 556 individual species. Given the large fraction of global land currently used under low land-use intensity, we find its contribution to biodiversity loss to be substantial (~25%). While both sets of intensity indicators yield similar global average results, we find regional differences between them and discuss data gaps. Our results support calls for improved sustainable intensification strategies and demand-side actions to reduce trade-offs between food security and biodiversity conservation.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Vertebrados , Agricultura , Animales , Ecosistema
14.
Nat Commun ; 13(1): 106, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013164

RESUMEN

The rapidly rising generation of municipal solid waste jeopardizes the environment and contributes to climate heating. Based on the Shared Socioeconomic Pathways, we here develop a global systematic approach for evaluating the potentials to reduce emissions of greenhouse gases and air pollutants from the implementation of circular municipal waste management systems. We contrast two sets of global scenarios until 2050, namely baseline and mitigation scenarios, and show that mitigation strategies in the sustainability-oriented scenario yields earlier, and major, co-benefits compared to scenarios in which inequalities are reduced but that are focused solely on technical solutions. The sustainability-oriented scenario leaves 386 Tg CO2eq/yr of GHG (CH4 and CO2) to be released while air pollutants from open burning can be eliminated, indicating that this source of ambient air pollution can be entirely eradicated before 2050.

15.
Glob Chang Biol ; 28(1): 307-322, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34651392

RESUMEN

Land use has greatly transformed Earth's surface. While spatial reconstructions of how the extent of land cover and land-use types have changed during the last century are available, much less information exists about changes in land-use intensity. In particular, global reconstructions that consistently cover land-use intensity across land-use types and ecosystems are missing. We, therefore, lack understanding of how changes in land-use intensity interfere with the natural processes in land systems. To address this research gap, we map land-cover and land-use intensity changes between 1910 and 2010 for 9 points in time. We rely on the indicator framework of human appropriation of net primary production (HANPP) to quantify and map land-use-induced alterations of the carbon flows in ecosystems. We find that, while at the global aggregate level HANPP growth slowed down during the century, the spatial dynamics of changes in HANPP were increasing, with the highest change rates observed in the most recent past. Across all biomes, the importance of changes in land-use areas has declined, with the exception of the tropical biomes. In contrast, increases in land-use intensity became the most important driver of HANPP across all biomes and settings. We conducted uncertainty analyses by modulating input data and assumptions, which indicate that the spatial patterns of land use and potential net primary production are the most critical factors, while spatial allocation rules and uncertainties in overall harvest values play a smaller role. Highlighting the increasing role of land-use intensity compared to changes in the areal extent of land uses, our study supports calls for better integration of the intensity dimension into global analyses and models. On top of that, we provide important empirical input for further analyses of the sustainability of the global land system.


Asunto(s)
Carbono , Ecosistema , Humanos
16.
Sustain Sci ; 16(5): 1405-1421, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721700

RESUMEN

Energy, food, or mobility can be conceptualized as provisioning systems which are decisive to sustainability transformations in how they shape resource use and because of emissions resulting from them. To curb environmental pressures and improve societal well-being, fundamental changes to existing provisioning systems are necessary. In this article, we propose that provisioning systems be conceptualized as featuring integrated socio-metabolic and political-economic dimensions. In socio-metabolic terms, material stocks-buildings, infrastructures, and machines, for example-are key components of provisioning systems and transform flows of energy and materials into goods and services. In political-economic terms, provisioning systems are formed by actors, institutions, and capital. We loosely identify and closely analyze, from socio-metabolic and political-economic perspectives, five phases along which provisioning systems are shaped and in which specific opportunities for interventions exist. Relying mainly on examples from the fossil-fueled electricity system, we argue that an integrated conceptualization of provisioning systems can advance understanding of these systems in two essential ways: by (1) facilitating a more encompassing perspective on current forms of provisioning as relying on capitalist regulation and on material stocks and flows and by (2) embedding provisioning systems within their historical context, making it possible to conceive of more sustainable and just forms of provisioning under (radically) altered conditions.

17.
Data Brief ; 38: 107351, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34553008

RESUMEN

Electricity infrastructures are crucial for economic prosperity and underpin fundamental energy services. This article provides global datasets on installed power plant capacities, transmission and distribution grid lengths as well as transformer capacities. A country-level dataset on installed electricity generation capacities during 1980 to 2017, comprising 14 types of power plants and technologies, is obtained by combining data from three different online databases. Transmission grid lengths are derived from georeferenced data available from OpenStreetMap, augmented with data from national and international statistics. Data gaps are filled and historical developments estimated by applying a linear regression model. Statistical data on distribution grids lengths are collected for 31 countries that make up almost 50% of the global electricity consumption. Estimates for distribution grid lengths in the remaining countries are again obtained through linear regression. Data on installed transformer capacities are sparsely available from market intelligence reports and specialist journals. For most countries, they are estimated from typical transformer-to-generator ratios, i.e. based on power plant capacities. Global generation capacity expansion since 1980 was dominated by coal-fired (mainly China and India) and gas-fired plants (mainly industrialized countries and Middle East). Solar and wind power accounted for the second and third largest capacity additions since 2010 (after coal-fired plants). The total length of transmission circuits worldwide is estimated at 4.7 million kilometres, and the length of distribution grids between 88 and 104 million km. China accounts for 41% of the expansion of global transmission grids, and 32% of the expansion of distribution grids since 1980. In 2017, China's electricity grids were approximately as large as the grids of all western industrialized countries combined. The globally installed capacity of transformers is estimated between 36 and 45 Teravolt-Ampere, with transmission and distribution transformers accounting for above 40% each, and generator step-up transformers for the rest. The data provided in this article are used for estimating global material stocks in electricity infrastructures in the related research paper [1] and can be used in energy system models, for econometric analyses or development indices on country level and many more purposes.

18.
Environ Sci Technol ; 55(5): 3368-3379, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33600720

RESUMEN

The dynamics of societal material stocks such as buildings and infrastructures and their spatial patterns drive surging resource use and emissions. Two main types of data are currently used to map stocks, night-time lights (NTL) from Earth-observing (EO) satellites and cadastral information. We present an alternative approach for broad-scale material stock mapping based on freely available high-resolution EO imagery and OpenStreetMap data. Maps of built-up surface area, building height, and building types were derived from optical Sentinel-2 and radar Sentinel-1 satellite data to map patterns of material stocks for Austria and Germany. Using material intensity factors, we calculated the mass of different types of buildings and infrastructures, distinguishing eight types of materials, at 10 m spatial resolution. The total mass of buildings and infrastructures in 2018 amounted to ∼5 Gt in Austria and ∼38 Gt in Germany (AT: ∼540 t/cap, DE: ∼450 t/cap). Cross-checks with independent data sources at various scales suggested that the method may yield more complete results than other data sources but could not rule out possible overestimations. The method yields thematic differentiations not possible with NTL, avoids the use of costly cadastral data, and is suitable for mapping larger areas and tracing trends over time.


Asunto(s)
Austria , Alemania
19.
J Land Use Sci ; 15(5): 652-672, 2020 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-33343685

RESUMEN

This paper investigates to what extent the theories of Thomas Robert Malthus and Ester Boserup are still useful to analyse population and land-use trajectories in an industrial society at a regional scale. Following a model-based approach toward long-term socio-ecological research, we built two system dynamic models, each representing one theory, and calculated socio-ecological trajectories from 1961 to 2011 for a study region located within the Eisenwurzen region in Austria. Comparing the model trajectories with empirical data reveals opposing results for the fit of the dynamics of 'population and technology' compared to 'land use and technology'. Technology strongly influenced population development, whereas its impact on land-use intensity faded over time. Although these theories are usually seen as opposing, both models identify population development as a main driver for land-use changes, mainly population decreases that contributed to farmland abandonment. We find out-migration to be essential when applying the investigated theories to contemporary societies.

20.
Conserv Lett ; 13(4): e12713, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32999687

RESUMEN

Increasing evidence-synthesized in this paper-shows that economic growth contributes to biodiversity loss via greater resource consumption and higher emissions. Nonetheless, a review of international biodiversity and sustainability policies shows that the majority advocate economic growth. Since improvements in resource use efficiency have so far not allowed for absolute global reductions in resource use and pollution, we question the support for economic growth in these policies, where inadequate attention is paid to the question of how growth can be decoupled from biodiversity loss. Drawing on the literature about alternatives to economic growth, we explore this contradiction and suggest ways forward to halt global biodiversity decline. These include policy proposals to move beyond the growth paradigm while enhancing overall prosperity, which can be implemented by combining top-down and bottom-up governance across scales. Finally, we call the attention of researchers and policy makers to two immediate steps: acknowledge the conflict between economic growth and biodiversity conservation in future policies; and explore socioeconomic trajectories beyond economic growth in the next generation of biodiversity scenarios.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...