Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(23): e2314213121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805282

RESUMEN

The anterolateral system (ALS) is a major ascending pathway from the spinal cord that projects to multiple brain areas and underlies the perception of pain, itch, and skin temperature. Despite its importance, our understanding of this system has been hampered by the considerable functional and molecular diversity of its constituent cells. Here, we use fluorescence-activated cell sorting to isolate ALS neurons belonging to the Phox2a-lineage for single-nucleus RNA sequencing. We reveal five distinct clusters of ALS neurons (ALS1-5) and document their laminar distribution in the spinal cord using in situ hybridization. We identify three clusters of neurons located predominantly in laminae I-III of the dorsal horn (ALS1-3) and two clusters with cell bodies located in deeper laminae (ALS4 and ALS5). Our findings reveal the transcriptional logic that underlies ALS neuronal diversity in the adult mouse and uncover the molecular identity of two previously identified classes of projection neurons. We also show that these molecular signatures can be used to target groups of ALS neurons using retrograde viral tracing. Overall, our findings provide a valuable resource for studying somatosensory biology and targeting subclasses of ALS neurons.


Asunto(s)
Proteínas de Homeodominio , Animales , Ratones , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Médula Espinal/citología , Médula Espinal/metabolismo , Neuronas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Núcleo Celular/metabolismo , Núcleo Celular/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
bioRxiv ; 2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37786726

RESUMEN

The anterolateral system (ALS) is a major ascending pathway from the spinal cord that projects to multiple brain areas and underlies the perception of pain, itch and skin temperature. Despite its importance, our understanding of this system has been hampered by the considerable functional and molecular diversity of its constituent cells. Here we use fluorescence-activated cell sorting to isolate ALS neurons belonging to the Phox2a-lineage for single-nucleus RNA sequencing. We reveal five distinct clusters of ALS neurons (ALS1-5) and document their laminar distribution in the spinal cord using in situ hybridization. We identify 3 clusters of neurons located predominantly in laminae I-III of the dorsal horn (ALS1-3) and two clusters with cell bodies located in deeper laminae (ALS4 & ALS5). Our findings reveal the transcriptional logic that underlies ALS neuronal diversity in the adult mouse and uncover the molecular identity of two previously identified classes of projection neurons. We also show that these molecular signatures can be used to target groups of ALS neurons using retrograde viral tracing. Overall, our findings provide a valuable resource for studying somatosensory biology and targeting subclasses of ALS neurons.

3.
Nat Commun ; 13(1): 5199, 2022 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-36057681

RESUMEN

Allodynia is a state in which pain is elicited by innocuous stimuli. Capsaicin applied to the skin results in an allodynia that extends to a broad region beyond the application site. This sensitization is thought to be mediated by spinal networks; however, we do not have a clear picture of which spinal neurons mediate this phenomenon. To address this gap, we used two-photon calcium imaging of excitatory interneurons and spinal projection neurons in the mouse spinal dorsal horn. To distinguish among neuronal subtypes, we developed CICADA, a cell profiling approach to identify cell types during calcium imaging. We then identified capsaicin-responsive and capsaicin-sensitized neuronal populations. Capsaicin-sensitized neurons showed emergent responses to innocuous input and increased receptive field sizes consistent with psychophysical reports. Finally, we identified spinal output neurons that showed enhanced responses from innocuous input. These experiments provide a population-level view of central sensitization and a framework with which to model somatosensory integration in the dorsal horn.


Asunto(s)
Sensibilización del Sistema Nervioso Central , Hiperalgesia , Animales , Calcio/metabolismo , Capsaicina/metabolismo , Capsaicina/farmacología , Hiperalgesia/metabolismo , Ratones , Células del Asta Posterior/metabolismo , Asta Dorsal de la Médula Espinal
4.
Pain ; 162(7): 2120-2131, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34130311

RESUMEN

ABSTRACT: Most cutaneous C fibers, including both peptidergic and nonpeptidergic subtypes, are presumed to be nociceptors and respond to noxious input in a graded manner. However, mechanically sensitive, nonpeptidergic C fibers also respond to mechanical input in the innocuous range, so the degree to which they contribute to nociception remains unclear. To address this gap, we investigated the function of nonpeptidergic afferents using the MrgprdCre allele. In real-time place aversion studies, we found that low-frequency optogenetic activation of MrgrpdCre lineage neurons was not aversive in naive mice but became aversive after spared nerve injury (SNI). To address the underlying mechanisms of this allodynia, we recorded responses from lamina I spinoparabrachial (SPB) neurons using the semi-intact ex vivo preparation. After SNI, innocuous brushing of the skin gave rise to abnormal activity in lamina I SPB neurons, consisting of an increase in the proportion of recorded neurons that responded with excitatory postsynaptic potentials or action potentials. This increase was likely due, at least in part, to an increase in the proportion of lamina I SPB neurons that received input on optogenetic activation of MrgprdCre lineage neurons. Intriguingly, in SPB neurons, there was a significant increase in the excitatory postsynaptic current latency from MrgprdCre lineage input after SNI, consistent with the possibility that the greater activation post-SNI could be due to the recruitment of a new polysynaptic circuit. Together, our findings suggest that MrgprdCre lineage neurons can provide mechanical input to the dorsal horn that is nonnoxious before injury but becomes noxious afterwards because of the engagement of a previously silent polysynaptic circuit in the dorsal horn.


Asunto(s)
Hiperalgesia , Optogenética , Animales , Ratones , Neuronas , Nociceptores , Asta Dorsal de la Médula Espinal
5.
Sci Transl Med ; 13(579)2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33536279

RESUMEN

Morphine-induced itch is a very common and debilitating side effect that occurs in laboring women who receive epidural analgesia and in patients who receive spinal morphine for relief of perioperative pain. Although antihistamines are still widely prescribed for the treatment of morphine-induced itch, their use is controversial because the cellular basis for morphine-induced itch remains unclear. Here, we used animal models and show that neuraxial morphine causes itch through neurons and not mast cells. In particular, we found that spinal dynorphin (Pdyn) neurons are both necessary and sufficient for morphine-induced itch in mice. Agonism of the kappa-opioid receptor alleviated morphine-induced itch in mice and nonhuman primates. Thus, our findings not only reveal that morphine causes itch through a mechanism of disinhibition but also challenge the long-standing use of antihistamines, thereby informing the treatment of millions worldwide.


Asunto(s)
Dinorfinas , Morfina , Analgésicos Opioides/efectos adversos , Animales , Humanos , Ratones , Neuronas , Prurito/inducido químicamente , Prurito/tratamiento farmacológico
6.
Nature ; 587(7833): 258-263, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33116307

RESUMEN

The anterolateral pathway consists of ascending spinal tracts that convey pain, temperature and touch information from the spinal cord to the brain1-4. Projection neurons of the anterolateral pathway are attractive therapeutic targets for pain treatment because nociceptive signals emanating from the periphery are channelled through these spinal projection neurons en route to the brain. However, the organizational logic of the anterolateral pathway remains poorly understood. Here we show that two populations of projection neurons that express the structurally related G-protein-coupled receptors (GPCRs) TACR1 and GPR83 form parallel ascending circuit modules that cooperate to convey thermal, tactile and noxious cutaneous signals from the spinal cord to the lateral parabrachial nucleus of the pons. Within this nucleus, axons of spinoparabrachial (SPB) neurons that express Tacr1 or Gpr83 innervate distinct sets of subnuclei, and strong optogenetic stimulation of the axon terminals induces distinct escape behaviours and autonomic responses. Moreover, SPB neurons that  express Gpr83 are highly sensitive to cutaneous mechanical stimuli and receive strong synaptic inputs from both high- and low-threshold primary mechanosensory neurons. Notably, the valence associated with activation of SPB neurons that express Gpr83 can be either positive or negative, depending on stimulus intensity. These findings reveal anatomically, physiologically and functionally distinct subdivisions of the SPB tract that underlie affective aspects of touch and pain.


Asunto(s)
Vías Nerviosas , Dolor/fisiopatología , Médula Espinal/citología , Médula Espinal/fisiología , Tacto/fisiología , Animales , Axones/metabolismo , Femenino , Masculino , Mecanotransducción Celular , Ratones , Filosofía , Receptores Acoplados a Proteínas G/genética , Células Receptoras Sensoriales/metabolismo , Piel/inervación , Sinapsis/metabolismo
7.
Pain ; 161(1): 185-194, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31577643

RESUMEN

Spinal projection neurons are a major pathway through which somatic stimuli are conveyed to the brain. However, the manner in which this information is coded is poorly understood. Here, we report the identification of a modality-selective spinoparabrachial (SPB) neuron subtype with unique properties. Specifically, we find that cold-selective SPB neurons are differentiated by selective afferent input, reduced sensitivity to substance P, distinct physiological properties, small soma size, and low basal drive. In addition, optogenetic experiments reveal that cold-selective SPB neurons do not receive input from Nos1 inhibitory interneurons and, compared with other SPB neurons, show significantly smaller inhibitory postsynaptic currents upon activation of Pdyn inhibitory interneurons. Together, these data suggest that cold output from the spinal cord to the parabrachial nucleus is mediated by a specific cell type with distinct properties.


Asunto(s)
Potenciales de Acción/fisiología , Frío , Neuronas/fisiología , Núcleos Parabraquiales/fisiología , Médula Espinal/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Femenino , Masculino , Ratones , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Neuronas/efectos de los fármacos , Núcleos Parabraquiales/efectos de los fármacos , Técnicas de Placa-Clamp , Médula Espinal/efectos de los fármacos , Sustancia P/farmacología
8.
Proc Natl Acad Sci U S A ; 116(40): 20104-20114, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31527246

RESUMEN

Viral cancers show oncogene addiction to viral oncoproteins, which are required for survival and proliferation of the dedifferentiated cancer cell. Human Merkel cell carcinomas (MCCs) that harbor a clonally integrated Merkel cell polyomavirus (MCV) genome have low mutation burden and require viral T antigen expression for tumor growth. Here, we showed that MCV+ MCC cells cocultured with keratinocytes undergo neuron-like differentiation with neurite outgrowth, secretory vesicle accumulation, and the generation of sodium-dependent action potentials, hallmarks of a neuronal cell lineage. Cocultured keratinocytes are essential for induction of the neuronal phenotype. Keratinocyte-conditioned medium was insufficient to induce this phenotype. Single-cell RNA sequencing revealed that T antigen knockdown inhibited cell cycle gene expression and reduced expression of key Merkel cell lineage/MCC marker genes, including HES6, SOX2, ATOH1, and KRT20 Of these, T antigen knockdown directly inhibited Sox2 and Atoh1 expression. MCV large T up-regulated Sox2 through its retinoblastoma protein-inhibition domain, which in turn activated Atoh1 expression. The knockdown of Sox2 in MCV+ MCCs mimicked T antigen knockdown by inducing MCC cell growth arrest and neuron-like differentiation. These results show Sox2-dependent conversion of an undifferentiated, aggressive cancer cell to a differentiated neuron-like phenotype and suggest that the ontology of MCC arises from a neuronal cell precursor.


Asunto(s)
Antígenos Virales de Tumores/genética , Carcinoma de Células de Merkel/etiología , Carcinoma de Células de Merkel/metabolismo , Poliomavirus de Células de Merkel/genética , Fenotipo , Infecciones por Polyomavirus/complicaciones , Factores de Transcripción SOXB1/genética , Antígenos Virales de Tumores/inmunología , Antígenos Virales de Tumores/metabolismo , Carcinoma de Células de Merkel/patología , Ciclo Celular/genética , Línea Celular Tumoral , Linaje de la Célula/genética , Transformación Celular Viral , Técnicas de Silenciamiento del Gen , Humanos , Queratinocitos , Células de Merkel/metabolismo , Poliomavirus de Células de Merkel/inmunología , Neuritas/metabolismo , Neuronas/metabolismo , Infecciones por Polyomavirus/inmunología , Infecciones por Polyomavirus/virología , Factores de Transcripción SOXB1/metabolismo , Infecciones Tumorales por Virus/complicaciones , Infecciones Tumorales por Virus/inmunología , Infecciones Tumorales por Virus/virología
9.
Neuron ; 99(6): 1274-1288.e6, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30236284

RESUMEN

Primary afferents are known to be inhibited by kappa opioid receptor (KOR) signaling. However, the specific types of somatosensory neurons that express KOR remain unclear. Here, using a newly developed KOR-cre knockin allele, viral tracing, single-cell RT-PCR, and ex vivo recordings, we show that KOR is expressed in several populations of primary afferents: a subset of peptidergic sensory neurons, as well as low-threshold mechanoreceptors that form lanceolate or circumferential endings around hair follicles. We find that KOR acts centrally to inhibit excitatory neurotransmission from KOR-cre afferents in laminae I and III, and this effect is likely due to KOR-mediated inhibition of Ca2+ influx, which we observed in sensory neurons from both mouse and human. In the periphery, KOR signaling inhibits neurogenic inflammation and nociceptor sensitization by inflammatory mediators. Finally, peripherally restricted KOR agonists selectively reduce pain and itch behaviors, as well as mechanical hypersensitivity associated with a surgical incision. These experiments provide a rationale for the use of peripherally restricted KOR agonists for therapeutic treatment.


Asunto(s)
Neuronas Aferentes/efectos de los fármacos , Dolor/tratamiento farmacológico , Receptores Opioides kappa/antagonistas & inhibidores , Transducción de Señal/fisiología , Animales , Axones/fisiología , Ratones , Ratones Transgénicos , Neuronas/fisiología , Nociceptores/efectos de los fármacos , Nociceptores/metabolismo , Manejo del Dolor , Receptores Opioides kappa/metabolismo
10.
Neuron ; 99(3): 421-422, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-30092208

RESUMEN

Chronic itch is a major symptom of cutaneous T cell lymphoma (CTCL). In this issue of Neuron, Han and colleagues (2018) provide evidence that one of the itch mediators in CTCL is an extracellular miRNA that directly activates TRPA1 on sensory neurons.


Asunto(s)
MicroARNs , Canales de Potencial de Receptor Transitorio , Humanos , Prurito , Células Receptoras Sensoriales , Canal Catiónico TRPA1
11.
Pain ; 159(8): 1484-1493, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29578943

RESUMEN

Wind-up is a frequency-dependent increase in the response of spinal cord neurons, which is believed to underlie temporal summation of nociceptive input. However, whether spinoparabrachial neurons, which likely contribute to the affective component of pain, undergo wind-up was unknown. Here, we addressed this question and investigated the underlying neural circuit. We show that one-fifth of lamina I spinoparabrachial neurons undergo wind-up, and provide evidence that wind-up in these cells is mediated in part by a network of spinal excitatory interneurons that show reverberating activity. These findings provide insight into a polysynaptic circuit of sensory augmentation that may contribute to the wind-up of pain's unpleasantness.


Asunto(s)
Interneuronas/fisiología , Neuronas/fisiología , Dolor/fisiopatología , Asta Dorsal de la Médula Espinal/fisiopatología , Médula Espinal/fisiopatología , Animales , Ratones , Técnicas de Placa-Clamp
12.
Pain ; 159(3): 603-609, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29389746

RESUMEN

Neuropathic itch is a pathological condition that is due to damage within the nervous system. This type of itch can be severe and unrelenting, which has a very negative impact on quality of life. Neuropathic itch is more common than generally appreciated because most types of neuropathic pain have a neuropathic itch counterpart. Unfortunately, much like neuropathic pain, there is a lack of effective treatments for neuropathic itch. Here, we consider the neural basis of itch and then describe how injuries within these neural circuits can lead to neuropathic itch in both animal models and human disease states.


Asunto(s)
Neuralgia/complicaciones , Prurito/etiología , Animales , Humanos
13.
Elife ; 52016 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-27991851

RESUMEN

The somatosensory input that gives rise to the perceptions of pain, itch, cold and heat are initially integrated in the superficial dorsal horn of the spinal cord. Here, we describe a new approach to investigate these neural circuits in mouse. This semi-intact somatosensory preparation enables recording from spinal output neurons, while precisely controlling somatosensory input, and simultaneously manipulating specific populations of spinal interneurons. Our findings suggest that spinal interneurons show distinct temporal and spatial tuning properties. We also show that modality selectivity - mechanical, heat and cold - can be assessed in both retrogradely labeled spinoparabrachial projection neurons and genetically labeled spinal interneurons. Finally, we demonstrate that interneuron connectivity can be determined via optogenetic activation of specific interneuron subtypes. This new approach may facilitate key conceptual advances in our understanding of the spinal somatosensory circuits in health and disease.


Asunto(s)
Interneuronas/fisiología , Neurofisiología/métodos , Sensación , Médula Espinal/anatomía & histología , Médula Espinal/fisiología , Animales , Ratones , Red Nerviosa
15.
Elife ; 42015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26329459

RESUMEN

How thermal, mechanical and chemical stimuli applied to the skin are transduced into signals transmitted by peripheral neurons to the CNS is an area of intense study. Several studies indicate that transduction mechanisms are intrinsic to cutaneous neurons and that epidermal keratinocytes only modulate this transduction. Using mice expressing channelrhodopsin (ChR2) in keratinocytes we show that blue light activation of the epidermis alone can produce action potentials (APs) in multiple types of cutaneous sensory neurons including SA1, A-HTMR, CM, CH, CMC, CMH and CMHC fiber types. In loss of function studies, yellow light stimulation of keratinocytes that express halorhodopsin reduced AP generation in response to naturalistic stimuli. These findings support the idea that intrinsic sensory transduction mechanisms in epidermal keratinocytes can directly elicit AP firing in nociceptive as well as tactile sensory afferents and suggest a significantly expanded role for the epidermis in sensory processing.


Asunto(s)
Potenciales de Acción , Epidermis/fisiología , Queratinocitos/fisiología , Dolor Nociceptivo , Células Receptoras Sensoriales/fisiología , Animales , Ratones , Tacto
16.
Nat Med ; 21(8): 927-31, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26193341

RESUMEN

Chronic itch is an intractable symptom of inflammatory skin diseases, such as atopic and contact dermatitis. Recent studies have revealed neuronal pathways selective for itch, but the mechanisms by which itch turns into a pathological chronic state are poorly understood. Using mouse models of atopic and contact dermatitis, we demonstrate a long-term reactive state of astrocytes in the dorsal horn of the spinal segments that corresponds to lesioned, itchy skin. We found that reactive astrogliosis depended on the activation of signal transducer and activator of transcription 3 (STAT3). Conditional disruption of astrocytic STAT3 suppressed chronic itch, and pharmacological inhibition of spinal STAT3 ameliorated the fully developed chronic itch. Mice with atopic dermatitis exhibited an increase in scratching elicited by intrathecal administration of the itch-inducer gastrin-releasing peptide (GRP), and this enhancement was normalized by suppressing STAT3-mediated reactive astrogliosis. Moreover, we identified lipocalin-2 (LCN2) as an astrocytic STAT3-dependent upregulated factor that was crucial for chronic itch, and we demonstrated that intrathecal administration of LCN2 to normal mice increased spinal GRP-evoked scratching. Our findings indicate that STAT3-dependent reactive astrocytes act as critical amplifiers of itching through a mechanism involving the enhancement of spinal itch signals by LCN2, thereby providing a previously unrecognized target for treating chronic itch.


Asunto(s)
Prurito/etiología , Factor de Transcripción STAT3/fisiología , Asta Dorsal de la Médula Espinal/patología , Proteínas de Fase Aguda/fisiología , Animales , Astrocitos/fisiología , Enfermedad Crónica , Péptido Liberador de Gastrina/fisiología , Lipocalina 2 , Lipocalinas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Oncogénicas/fisiología
17.
J Med Food ; 18(10): 1143-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26061570

RESUMEN

Opuntia ficus-indica (OFI) is a cactus species widely used as an anti-inflammatory, antilipidemic, and hypoglycemic agent. It has been shown that OFI extract (OFIE) inhibits oxidative stress in animal models of diabetes and hepatic disease; however, its antioxidant mechanism remains largely unknown. In this study, we demonstrated that OFIE exhibited potent antioxidant activity through the activation of nuclear factor erythroid 2-related factor 2 (NRF2) and the downstream antioxidant enzyme NAD(P)H: quinone oxidoreductase 1 (NQO1), which inhibited the generation of reactive oxygen species in keratinocytes challenged with tumor necrosis factor α or benzo[α]pyrene. The antioxidant capacity of OFIE was canceled in NRF2 knockdown keratinocytes. OFIE exerted this NRF2-NQO1 upregulation through activation of the aryl hydrocarbon receptor (AHR). Moreover, the ligation of AHR by OFIE upregulated the expression of epidermal barrier proteins: filaggrin and loricrin. OFIE also prevented TH2 cytokine-mediated downregulation of filaggrin and loricrin expression in an AHR-dependent manner because it was canceled in AHR knockdown keratinocytes. Antioxidant OFIE is a potent activator of AHR-NRF2-NQO1 signaling and may be beneficial in treating barrier-disrupted skin disorders.


Asunto(s)
Proteínas de Filamentos Intermediarios/análisis , Queratinocitos/efectos de los fármacos , Proteínas de la Membrana/análisis , Factor 2 Relacionado con NF-E2/fisiología , Opuntia/química , Receptores de Hidrocarburo de Aril/metabolismo , Antioxidantes/farmacología , Células Cultivadas , Proteínas Filagrina , Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Queratinocitos/química , Queratinocitos/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Factor 2 Relacionado con NF-E2/deficiencia , Factor 2 Relacionado con NF-E2/genética , Extractos Vegetales/farmacología , Receptores de Hidrocarburo de Aril/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Enfermedades de la Piel/tratamiento farmacológico
19.
Neuron ; 82(3): 573-86, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24726382

RESUMEN

Menthol and other counterstimuli relieve itch, resulting in an antipruritic state that persists for minutes to hours. However, the neural basis for this effect is unclear, and the underlying neuromodulatory mechanisms are unknown. Previous studies revealed that Bhlhb5(-/-) mice, which lack a specific population of spinal inhibitory interneurons (B5-I neurons), develop pathological itch. Here we characterize B5-I neurons and show that they belong to a neurochemically distinct subset. We provide cause-and-effect evidence that B5-I neurons inhibit itch and show that dynorphin, which is released from B5-I neurons, is a key neuromodulator of pruritus. Finally, we show that B5-I neurons are innervated by menthol-, capsaicin-, and mustard oil-responsive sensory neurons and are required for the inhibition of itch by menthol. These findings provide a cellular basis for the inhibition of itch by chemical counterstimuli and suggest that kappa opioids may be a broadly effective therapy for pathological itch.


Asunto(s)
Dinorfinas/metabolismo , Interneuronas/metabolismo , Inhibición Neural/fisiología , Células del Asta Posterior/metabolismo , Prurito/metabolismo , Prurito/prevención & control , Analgésicos Opioides/farmacología , Analgésicos Opioides/uso terapéutico , Animales , Capsaicina/farmacología , Dinorfinas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Octreótido/farmacología , Técnicas de Cultivo de Órganos , Receptores Opioides kappa/agonistas , Médula Espinal/metabolismo
20.
J Dermatol Sci ; 72(3): 311-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23993025

RESUMEN

BACKGROUND: S100 proteins belong to a family of calcium-binding proteins that regulate cell proliferation and differentiation. Despite our growing knowledge about the biology of S100 proteins in some human cancers, little is known about the expression of S100 family members in epidermal tumors and their clinical significance. OBJECTIVE: To determine the expression of S100A2, S100A4, S100A6, S100A7, as well as matrix metalloproteinases 9 (MMP9) in a spectrum of epidermal tumors with benign and malignant characteristics. METHODS: Immunohistological staining was performed for S100A2, S100A4, S100A6, S100A7, and MMP9 in 101 cases of various types of epidermal tumors, viz., squamous cell carcinoma (SCC), Bowen's disease (BD), actinic keratosis (AK), basal cell carcinoma (BCC), keratoacanthoma (KA), and seborrheic keratosis (SK). Thirteen specimens of normal skin (NS) served as control. RESULTS: S100A2, S100A6, and S100A7 positive immunostaining was variably observed in different epidermal tumors. S100A4 staining was not observed in any epidermal tumors, but was clearly visible in dendritic cells. MMP9 immunostaining was positive only in 22/26 (84.62%) of SCC and 2/15 (13.33%) of BD cases. Expression of S100A2, S100A6, and S100A7 was increased in tumor cells compared to NS. However, only S100A6 expression was significantly associated with malignant transformation of epidermal tumors. Moreover, S100A6 expression was correlated with MMP9 expression in metastatic SCC. CONCLUSIONS: Epidermal tumors show increased expression of S100A2 and S100A7 proteins. S100A4 may be a useful and distinct marker for epidermal dendritic cells. Expression of S100A6 and MMP9 in combination is associated with the development of SCC.


Asunto(s)
Carcinogénesis/metabolismo , Carcinoma de Células Escamosas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Proteínas S100/metabolismo , Neoplasias Cutáneas/metabolismo , Epidermis/metabolismo , Humanos , Estudios Retrospectivos , Proteína A6 de Unión a Calcio de la Familia S100
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA