Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 8(5)2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31121992

RESUMEN

To limit the environmental pollution associated with intensive nitrogen (N) fertilizer usage, alternative cultural practices must be considered for crops requiring high N inputs such as rapeseed. In this context, the effects of silicon (Si) supply on the agronomic performance of rapeseed cultivated under field conditions with two N fertilizer levels (60 and 160 kg ha-1) were studied. Results showed that Si supplied in the form of silicic acid (12 kg ha-1) has no effect on the agronomic performance of plants cultivated with the lower N input. In contrast, in plants fertilized with 160 kg N ha-1, Si supply promotes the preservation of green leaves (until the flowering stage) and at harvest stage, increases biomass, yield, and seed micronutrient concentrations (especially cobalt and iron). The agronomic indexes show that the increase in seed yield is related to a better uptake of N from the soil by Si-treated plants, but is not an improvement in N mobilization towards the seeds. This study showed that Si supply combined with high N inputs (160 kg ha-1) improves usage of N fertilizer and yield. The possibility that a Si supply could allow for a reduction in N input without altering the yield of rapeseed is discussed.

2.
Planta ; 249(5): 1645-1651, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30820649

RESUMEN

MAIN CONCLUSION: Modulation of gene expression in roots of Brassica napus by silicon (Si) supply could allow plants to cope with future stresses. The origin of the beneficial effects of silicon (Si) in plants, especially when they are subject to stress, remains poorly understood. Some authors have shown that Si alleviates plant stress and consider that this is mainly due to a mechanical effect on the cell wall. In addition, the other studies have shown that Si can also affect gene expression and modulate a number of metabolic pathways, especially in plants cultivated under stress conditions. Previously, Haddad et al. (Front Plant Sci 9:5-16, 2018) showed that a pretreatment of Brassica napus plants with Si (1.7 mM) for 1 week alleviated the stress induced by N privation. These results suggest that this improved resistance in Si-treated plants might be due to the establishment of defense mechanisms prior to exposure to the N stress. The aim of the current work was to test this assumption in Brassica napus roots (where Si is mainly stored) using a transcriptomic approach via the RNA sequencing. Our results indicated that the Si supply leads to a modulation of the expression of genes in Brassica napus roots. Functional categorization of the differentially expressed genes demonstrated that numerous genes are involved in different metabolic pathways and especially in cell wall synthesis, phytohormone metabolism, and stress responses. All these results show that Si modifies the root metabolism of B. napus, which could allow a better adaptation to future stresses.


Asunto(s)
Brassica napus/efectos de los fármacos , Brassica napus/metabolismo , Silicio/farmacología , Brassica napus/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
3.
Front Plant Sci ; 9: 516, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29740460

RESUMEN

Silicon (Si) is the second most abundant element in soil and has several beneficial effects, especially in plants subjected to stress conditions. However, the effect of Si in preventing nitrogen (N) starvation in plants is poorly documented. The aim of this work was to study the effect of a short Si supply duration (7 days) on growth, N uptake, photosynthetic activity, and leaf senescence progression in rapeseed subjected (or not) to N starvation. Our results showed that after 1 week of Si supply, Si improves biomass and increases N uptake and root expression of a nitrate transporter gene. After 12 days of N starvation, compared to -Si plants, mature leaf from +Si plants showed a high chlorophyll content, a maintain of net photosynthetic activity, a decrease of oxidative stress markers [hydrogen peroxide (H2O2) and malondialdehyde (MDA)] and a significant delay in senescence. When N-deprived plants were resupplied with N, a greening again associated with an increase of photosynthetic activity was observed in mature leaves of plants pretreated with Si. Moreover, during the duration of N resupply, an increase of N uptake and nitrate transporter gene expression were observed in plants pretreated with Si. In conclusion, this study has shown a beneficial role of Si to alleviate damage associated with N starvation and more especially its role in delaying of leaf senescence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...