Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 44
1.
J Antimicrob Chemother ; 77(9): 2489-2499, 2022 08 25.
Article En | MEDLINE | ID: mdl-35678468

BACKGROUND: The WHO-endorsed shorter-course regimen for MDR-TB includes high-dose isoniazid. The pharmacokinetics of high-dose isoniazid within MDR-TB regimens has not been well described. OBJECTIVES: To characterize isoniazid pharmacokinetics at 5-15 mg/kg as monotherapy or as part of the MDR-TB treatment regimen. METHODS: We used non-linear mixed-effects modelling to evaluate the combined data from INHindsight, a 7 day early bactericidal activity study with isoniazid monotherapy, and PODRtb, an observational study of patients on MDR-TB treatment including terizidone, pyrazinamide, moxifloxacin, kanamycin, ethionamide and/or isoniazid. RESULTS: A total of 58 and 103 participants from the INHindsight and PODRtb studies, respectively, were included in the analysis. A two-compartment model with hepatic elimination best described the data. N-acetyltransferase 2 (NAT2) genotype caused multi-modal clearance, and saturable first-pass was observed beyond 10 mg/kg dosing. Saturable isoniazid kinetics predicted an increased exposure of approximately 50% beyond linearity at 20 mg/kg dosing. Participants treated with the MDR-TB regimen had a 65.6% lower AUC compared with participants on monotherapy. Ethionamide co-administration was associated with a 29% increase in isoniazid AUC. CONCLUSIONS: Markedly lower isoniazid exposures were observed in participants on combination MDR-TB treatment compared with monotherapy. Isoniazid displays saturable kinetics at doses >10 mg/kg. The safety implications of these phenomena remain unclear.


Arylamine N-Acetyltransferase , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis, Pulmonary , Antitubercular Agents/adverse effects , Arylamine N-Acetyltransferase/pharmacology , Ethionamide/pharmacology , Ethionamide/therapeutic use , Humans , Isoniazid/pharmacokinetics , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Pulmonary/drug therapy
2.
Am J Respir Crit Care Med ; 204(11): 1327-1335, 2021 12 01.
Article En | MEDLINE | ID: mdl-34403326

Rationale: There is accumulating evidence that higher-than-standard doses of isoniazid are effective against low-to-intermediate-level isoniazid-resistant strains of Mycobacterium tuberculosis, but the optimal dose remains unknown. Objectives: To characterize the association between isoniazid pharmacokinetics (standard or high dose) and early bactericidal activity against M. tuberculosis (drug sensitive and inhA mutated) and N-acetyltransferase 2 status. Methods: ACTG (AIDS Clinical Trial Group) A5312/INHindsight is a 7-day early bactericidal activity study with isoniazid at a normal dose (5 mg/kg) for patients with drug-sensitive bacteria and 5, 10, and 15 mg/kg doses for patients with inhA mutants. Participants with pulmonary tuberculosis received daily isoniazid monotherapy and collected sputum daily. Colony-forming units (cfu) on solid culture and time to positivity in liquid culture were jointly analyzed using nonlinear mixed-effects modeling. Measurements and Main Results: Fifty-nine adults were included in this analysis. A decline in sputum cfu was described by a one-compartment model, whereas an exponential bacterial growth model was used to interpret time-to-positivity data. The model found that bacterial kill is modulated by isoniazid concentration using an effect compartment and a sigmoidal Emax relationship (a model linking the drug concentration to the observed effect). The model predicted lower potency but similar maximum kill of isoniazid against inhA-mutated compared with drug-sensitive isolates. Based on simulations from the pharmacokinetics-pharmacodynamics model, to achieve a drop in bacterial load comparable to 5 mg/kg against drug-sensitive tuberculosis, 10- and 15-mg/kg doses are necessary against inhA-mutated isolates in slow and intermediate N-acetyltransferase 2 acetylators, respectively. Fast acetylators underperformed even at 15 mg/kg. Conclusions: Dosing of isoniazid based on N-acetyltransferase 2 acetylator status may help patients attain effective exposures against inhA-mutated isolates. Clinical trial registered with www.clinicaltrials.gov (NCT01936831).


Antitubercular Agents/administration & dosage , Isoniazid/administration & dosage , Sputum/microbiology , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Pulmonary/drug therapy , Adult , Antitubercular Agents/pharmacokinetics , Arylamine N-Acetyltransferase , Bacterial Proteins , Colony Count, Microbial , Dose-Response Relationship, Drug , Female , Humans , Isoniazid/pharmacokinetics , Male , Microbial Sensitivity Tests , Middle Aged , Oxidoreductases , Tuberculosis, Multidrug-Resistant/metabolism , Tuberculosis, Multidrug-Resistant/microbiology , Tuberculosis, Pulmonary/metabolism , Tuberculosis, Pulmonary/microbiology , Young Adult
3.
Lancet Infect Dis ; 21(7): 975-983, 2021 07.
Article En | MEDLINE | ID: mdl-33587897

BACKGROUND: Bedaquiline and delamanid are the first drugs of new classes registered for tuberculosis treatment in 40 years. Each can prolong the QTc interval, with maximum effects occurring weeks after drug initiation. The cardiac safety and microbiological activity of these drugs when co-administered are not well-established. Our aim was to characterise the effects of bedaquiline, delamanid, or both on the QTc interval, longitudinally over 6 months of multidrug treatment, among patients with multidrug-resistant or rifampicin-resistant tuberculosis taking multidrug background therapy. METHODS: ACTG A5343 is a phase 2, open-label, randomised, controlled trial in which adults with multidrug-resistant or rifampicin-resistant tuberculosis receiving multidrug background treatment were randomly assigned 1:1:1 by centrally, computer-generated randomisation, by means of permuted blocks to receive bedaquiline, delamanid, or both for 24 weeks. Participants were enrolled at TASK in Cape Town and the South African Tuberculosis Vaccine Initiative in Worcester, both in South Africa, and Hospital Maria Auxiliadora in Peru. Individuals with QTc greater than 450 ms were excluded. HIV-positive participants received dolutegravir-based antiretroviral therapy. Clofazimine was disallowed, and levofloxacin replaced moxifloxacin. ECG in triplicate and sputum cultures were done fortnightly. The primary endpoint was mean QTcF change from baseline (averaged over weeks 8-24); cumulative culture conversation at week 8-24 was an exploratory endpoint. Analyses included all participants who initiated study tuberculosis treatment (modified intention-to-treat population). This trial is registered with ClinicalTrials.gov, NCT02583048 and is ongoing. FINDINGS: Between Aug 26, 2016 and July 13, 2018, of 174 screened, 84 participants (28 in each treatment group, and 31 in total with HIV) were enrolled. Two participants did not initiate study treatment (one in the delamanid group withdrew consent and one in the bedaquiline plus delamanid group) did not meet the eligibility criterion). Mean change in QTc from baseline was 12·3 ms (95% CI 7·8-16·7; bedaquiline), 8·6 ms (4·0-13·1; delamanid), and 20·7 ms (16·1-25·3) (bedaquiline plus delamanid). There were no grade 3 or 4 adverse QTc prolongation events and no deaths during study treatment. Cumulative culture conversion by week 8 was 21 (88%) of 24 (95% CI 71-97; bedaquiline), 20 (83%) of 24 (65-95; delamanid), and 19 (95%) of 20 (79-100; bedaquiline plus delamanid) and was 92% (77-99) for bedaquiline, 91% (76-99), for delamanid, and 95% (79-100) for bedaquiline plus delamanid at 24 weeks. INTERPRETATION: Combining bedaquiline and delamanid has a modest, no more than additive, effect on the QTc interval, and initial microbiology data are encouraging. This study provides supportive evidence for use of these agents together in patients with multidrug-resistant or rifampicin-resistant tuberculosis with normal baseline QTc values. FUNDING: Division of AIDS, National Institutes of Health.


Antitubercular Agents/therapeutic use , Diarylquinolines/therapeutic use , Drug Therapy, Combination , Nitroimidazoles/therapeutic use , Oxazoles/therapeutic use , Tuberculosis, Multidrug-Resistant/drug therapy , Adult , Electrocardiography/drug effects , Female , Humans , Male , Peru , Rifampin , South Africa , Treatment Outcome
4.
Infect Dis Poverty ; 9(1): 52, 2020 May 15.
Article En | MEDLINE | ID: mdl-32414419

BACKGROUND: With the second largest tuberculosis (TB) burden globally, China is committed to actively engage in international TB clinical trials to contribute to global TB research. However, lack of research capacity among local sites has been identified as a barrier. MAIN TEXT: The China Tuberculosis Clinical Trials Consortium (CTCTC) was initiated by Beijing Chest Hospital with investment from the US National Institutes of Health and technical support from Family Health International 360 in 2013, as a nationwide collaborative clinical trial network to strengthen selected clinical site research capacity and attract TB clinical trials. The program aims to: 1) recruit leading hospitals that care for TB patients; 2) conduct on-site assessment to identify capacity gaps and needs for improvement; 3) design and deliver capacity building activities; 4) attract and deliver high quality results for TB clinical trials. A total of 24 sites have joined CTCTC, covering 20 provinces in China. Twenty-two sites have been accredited by the National Medical Products Administration (NMPA) to be qualified to conduct TB clinical trials. The onsite assessment, extensive trainings among the CTCTC sites and young investigators have resulted in better understanding and improvement of the site capacity in conducting TB clinical trials. The establishment and growth of the CTCTC network has benefited from the good leadership, effective international cooperation and local commitment. Issues in human resources, regulatory environment and sustainability have been challenging the network from continuing growth. Clinical researchers have full-time clinical responsibilities in China and it is thus important to build a cadre of other human resources to assist. The regulatory environment is becoming friendlier in China to introduce international clinical trials to the CTCTC network. CONCLUSIONS: The CTCTC, with mature management structure and sustainable development model, which are distilled five key lessons for other developing countries or investigators of interest. They are the respectively using assessment-based approach to design tailored training package, understanding the availability of clinical researchers, providing solutions to maintain sustainability, understanding local regulatory environments and working with an international organization with local on-site team, respectively. Although, the experiences and capacity of China's TB hospitals in conducting clinical research vary. Considerable efforts to continue building the capacity are still needed, although the gap is smaller for a few top-tier hospitals.


Capacity Building , Clinical Trials as Topic/methods , Global Health , International Cooperation , Tuberculosis/therapy , China
5.
J Clin Invest ; 130(6): 2789-2799, 2020 06 01.
Article En | MEDLINE | ID: mdl-32420917

The critical role of suppressive myeloid cells in immune regulation has come to the forefront in cancer research, with myeloid-derived suppressor cells (MDSCs) as a main oncology immunotherapeutic target. Recent improvement and standardization of criteria classifying tumor-induced MDSCs have led to unified descriptions and also promoted MDSC research in tuberculosis (TB) and AIDS. Despite convincing evidence on the induction of MDSCs by pathogen-derived molecules and inflammatory mediators in TB and AIDS, very little attention has been given to their therapeutic modulation or roles in vaccination in these diseases. Clinical manifestations in TB are consequences of complex host-pathogen interactions and are substantially affected by HIV infection. Here we summarize the current understanding and knowledge gaps regarding the role of MDSCs in HIV and Mycobacterium tuberculosis (co)infections. We discuss key scientific priorities to enable application of this knowledge to the development of novel strategies to improve vaccine efficacy and/or implementation of enhanced treatment approaches. Building on recent findings and potential for cross-fertilization between oncology and infection biology, we highlight current challenges and untapped opportunities for translating new advances in MDSC research into clinical applications for TB and AIDS.


Acquired Immunodeficiency Syndrome , HIV-1/immunology , Mycobacterium tuberculosis/immunology , Myeloid-Derived Suppressor Cells/immunology , Tuberculosis , Acquired Immunodeficiency Syndrome/immunology , Acquired Immunodeficiency Syndrome/pathology , Acquired Immunodeficiency Syndrome/therapy , Humans , Myeloid-Derived Suppressor Cells/pathology , Tuberculosis/immunology , Tuberculosis/pathology , Tuberculosis/therapy
7.
Am J Respir Crit Care Med ; 201(11): 1416-1424, 2020 Jun 01.
Article En | MEDLINE | ID: mdl-31945300

Rationale: High-dose isoniazid is recommended in short-course regimens for multidrug-resistant tuberculosis (TB). The optimal dose of isoniazid and its individual contribution to efficacy against TB strains with inhA or katG mutations are unknown.Objectives: To define the optimal dose of isoniazid for patients with isoniazid-resistant TB mediated by inhA mutations.Methods: AIDS Clinical Trials Group A5312 is a phase 2A, open-label trial in which individuals with smear-positive pulmonary TB with isoniazid resistance mediated by an inhA mutation were randomized to receive isoniazid 5, 10, or 15 mg/kg daily for 7 days (inhA group), and control subjects with drug-sensitive TB received the standard dose (5 mg/kg/d). Overnight sputum cultures were collected daily. The 7-day early bactericidal activity (EBA) of isoniazid was estimated as the average daily change in log10 cfu on solid media (EBAcfu0-7) or as time to positivity (TTP) in liquid media in hours (EBATTP0-7) using nonlinear mixed-effects models.Measurements and Main Results: Fifty-nine participants (88% with cavitary disease, 20% HIV-positive, 16 with isoniazid-sensitive TB, and 43 with isoniazid-monoresistant or multidrug-resistant TB) were enrolled at one site in South Africa. The mean EBAcfu0-7 at doses of 5, 10, and 15 mg/kg in the inhA group was 0.07, 0.17, and 0.22 log10 cfu/ml/d, respectively, and 0.16 log10 cfu/ml/d in control subjects. EBATTP0-7 patterns were similar. There were no drug-related grade ≥3 adverse events.Conclusions: Isoniazid 10-15 mg/kg daily had activity against TB strains with inhA mutations similar to that of 5 mg/kg against drug-sensitive strains. The activity of high-dose isoniazid against strains with katG mutations will be explored next.Clinical trial registered with www.clinicaltrials.gov (NCT01936831).

8.
Lancet Microbe ; 1(2): e84-e92, 2020 06.
Article En | MEDLINE | ID: mdl-33834177

BACKGROUND: Clinical studies suggest that isoniazid contributes rapid bacterial killing during the initial two days of tuberculosis treatment but that isoniazid's activity declines significantly after day three. We conducted a 14-day phase IIa open label, randomized trial to assess the essentiality of isoniazid in standard tuberculosis therapy. METHODS: A total of 69 adults with newly diagnosed sputum-positive tuberculosis from the South African Western Cape region were enrolled and randomized to a four-arm parallel assignment model. Participants were followed for 14 days as inpatients at either the University of Cape Town Lung Institute or at the TASK Applied Science clinical research organization. All arms received standard daily rifampicin, ethambutol, and pyrazinamide but differed as follows: isoniazid only on days one and two (n=17), isoniazid on days one and two then moxifloxacin on days three through 14 (n=16), no isoniazid (n=18), and a control group that received isoniazid for all 14 days (standard therapy, n=18). The primary endpoint was the rate of colony forming unit (CFU) decline during the first 14 days of treatment. RESULTS: For 62 participants analyzed, the initial 14-day mean daily fall in log10 CFU (95% CI) was 0·14 (0·11, 0·18) for participants receiving isoniazid for two days only; 0·13 (0·09, 0·17) for participants receiving isoniazid for two days followed by moxifloxacin; 0·12 (0·08, 0·15) for those not receiving isoniazid; and 0·13 (0·09, 0·16) for the standard therapy group. CONCLUSIONS: The 14 day EBA for the combination rifampicin, ethambutol, and pyrazinamide was not significantly changed by the addition of isoniazid for the first two days or for the first 14 days of treatment. In a post hoc analysis, significantly higher day-two EBAs were observed for all groups among participants with higher baseline sputum CFUs. Our finding that INH does not contribute to EBA suggests that INH could be replaced with another drug during standard treatment to improve efficacy and decrease rates of resistance to first-line drugs. (Funded by the NIH AIDS Clinical Trial Groups and NIH; A5307 ClinicalTrials.gov number, NCT01589497).


Antitubercular Agents , Isoniazid , Tuberculosis , Adult , Antitubercular Agents/therapeutic use , Drug Therapy, Combination , Ethambutol/therapeutic use , Humans , Isoniazid/therapeutic use , Moxifloxacin/therapeutic use , Pyrazinamide/therapeutic use , Rifampin/therapeutic use , Tuberculosis/drug therapy
9.
Curr HIV Res ; 18(1): 19-28, 2020.
Article En | MEDLINE | ID: mdl-31870268

The main advantage of animal models of infectious diseases over in vitro studies is the gain in the understanding of the complex dynamics between the immune system and the pathogen. While small animal models have practical advantages over large animal models, it is crucial to be aware of their limitations. Although the small animal model at least needs to be susceptible to the pathogen under study to obtain meaningful data, key elements of pathogenesis should also be reflected when compared to humans. Well-designed small animal models for HIV, hepatitis viruses and tuberculosis require, additionally, a thorough understanding of the similarities and differences in the immune responses between humans and small animals and should incorporate that knowledge into the goals of the study. To discuss these considerations, the NIAID hosted a workshop on 'Small Animal Models for HIV, Hepatitis B, and Tuberculosis' on May 30, 2019. Highlights of the workshop are outlined below.


Disease Models, Animal , HIV Infections/pathology , HIV-1/immunology , Hepatitis B virus/immunology , Hepatitis B/pathology , Mycobacterium tuberculosis/immunology , Tuberculosis/pathology , Animals , Coinfection/microbiology , Guinea Pigs , HIV Infections/immunology , Hepatitis B/immunology , Humans , Macaca mulatta , Marmota , Mice , National Institute of Allergy and Infectious Diseases (U.S.) , Rabbits , Tuberculosis/immunology , United States
12.
Front Immunol ; 8: 688, 2017.
Article En | MEDLINE | ID: mdl-28706516

To meet the challenges of increasing antimicrobial resistance, the infectious disease community needs innovative therapeutics. Precision medicine and immunotherapies are transforming cancer therapeutics by targeting the regulatory signaling pathways that are involved not only in malignancies but also in the metabolic and immunologic function of the tumor microenvironment. Infectious diseases target many of the same regulatory pathways as they modulate host metabolic functions for their own nutritional requirements and to impede host immunity. These similarities and the advances made in precision medicine and immuno-oncology that are relevant for the current development of host-directed therapies (HDTs) to treat infectious diseases are discussed. To harness this potential, improvements in drug screening methods and development of assays that utilize the research tools including high throughput multiplexes already developed by oncology are essential. A multidisciplinary approach that brings together immunologists, infectious disease specialists, and oncologists will be necessary to fully develop the potential of HDTs.

13.
Front Immunol ; 7: 577, 2016.
Article En | MEDLINE | ID: mdl-28018344

Tuberculosis (TB) remains a global health threat of alarming proportions, resulting in 1.5 million deaths worldwide. The only available licensed vaccine, Bacillus Calmette-Guérin, does not confer lifelong protection against active TB. To date, development of an effective vaccine against TB has proven to be elusive, and devising newer approaches for improved vaccination outcomes is an essential goal. Insights gained over the last several years have revealed multiple mechanisms of immune manipulation by Mycobacterium tuberculosis (Mtb) in infected macrophages and dendritic cells that support disease progression and block development of protective immunity. This review provides an assessment of the known immunoregulatory mechanisms altered by Mtb, and how new interventions may reverse these effects. Examples include blocking of inhibitory immune cell coreceptor checkpoints (e.g., programed death-1). Conversely, immune mechanisms that strengthen immune cell effector functions may be enhanced by interventions, including stimulatory immune cell coreceptors (e.g., OX40). Modification of the activity of key cell "immunometabolism" signaling pathway molecules, including mechanistic target of rapamycin, glycogen synthase kinase-3ß, wnt/ß-catenin, adenosine monophosophate-activated protein kinase, and sirtuins, related epigenetic changes, and preventing induction of immune regulatory cells (e.g., regulatory T cells, myeloid-derived suppressor cells) are powerful new approaches to improve vaccine responses. Interventions to favorably modulate these components have been studied primarily in oncology to induce efficient antitumor immune responses, often by potentiation of cancer vaccines. These agents include antibodies and a rapidly increasing number of small molecule drug classes that have contributed to the dramatic immune-based advances in treatment of cancer and other diseases. Because immune responses to malignancies and to Mtb share many similar mechanisms, studies to improve TB vaccine responses using interventions based on "immuno-oncology" are needed to guide possible repurposing. Understanding the regulation of immune cell functions appropriated by Mtb to promote the imbalance between protective and pathogenic immune responses may guide the development of innovative drug-based adjunct approaches to substantially enhance the clinical efficacy of TB vaccines.

14.
Am J Respir Crit Care Med ; 194(12): 1532-1540, 2016 12 15.
Article En | MEDLINE | ID: mdl-27387272

RATIONALE: Recent studies suggest that baseline tuberculous sputum comprises a mixture of routinely culturable and differentially culturable tubercle bacteria (DCTB). The latter seems to be drug tolerant and dependent on resuscitation-promoting factors (Rpfs). OBJECTIVES: To further explore this, we assessed sputum from patients with tuberculosis for DCTB and studied the impact of exogenous culture filtrate (CF) supplementation ex vivo. METHODS: Sputum samples from adults with tuberculosis and HIV-1 and adults with no HIV-1 were used for most probable number (MPN) assays supplemented with CF and Rpf-deficient CF, to detect CF-dependent and Rpf-independent DCTB, respectively. MEASUREMENTS AND MAIN RESULTS: In 110 individuals, 19.1% harbored CF-dependent DCTB and no Rpf-independent DCTB. Furthermore, 11.8% yielded Rpf-independent DCTB with no CF-dependent DCTB. In addition, 53.6% displayed both CF-dependent and Rpf-independent DCTB, 1.8% carried CF-independent DCTB, and 13.6% had no DCTB. Sputum from individuals without HIV-1 yielded higher CF-supplemented MPN counts compared with counterparts with HIV-1. Furthermore, individuals with HIV-1 with CD4 counts greater than 200 cells/mm3 displayed higher CF-supplemented MPN counts compared with participants with HIV-1 with CD4 counts less than 200 cells/mm3. CF supplementation allowed for detection of mycobacteria in 34 patients with no culturable bacteria on solid media. Additionally, the use of CF enhanced detection of sputum smear-negative individuals. CONCLUSIONS: These observations demonstrate a novel Rpf-independent DCTB population in sputum and reveal that reduced host immunity is associated with lower prevalence of CF-responsive bacteria. Quantification of DCTB in standard TB diagnosis would be beneficial because these organisms provide a putative biomarker to monitor treatment response and risk of disease recurrence.


HIV Infections/epidemiology , Mycobacterium tuberculosis/isolation & purification , Sputum/immunology , Tuberculosis, Pulmonary/epidemiology , Tuberculosis, Pulmonary/immunology , Adult , Comorbidity , Female , HIV Infections/immunology , Humans , Male , Mycobacterium tuberculosis/immunology , Prevalence , Sensitivity and Specificity , South Africa/epidemiology
15.
mBio ; 6(6): e01741-15, 2015 Nov 03.
Article En | MEDLINE | ID: mdl-26530386

UNLABELLED: Linezolid is an oxazolidinone with potent activity against Mycobacterium tuberculosis. Linezolid toxicity in patients correlates with the dose and duration of therapy. These toxicities are attributable to the inhibition of mitochondrial protein synthesis. Clinically relevant linezolid regimens were simulated in the in vitro hollow-fiber infection model (HFIM) system to identify the linezolid therapies that minimize toxicity, maximize antibacterial activity, and prevent drug resistance. Linezolid inhibited mitochondrial proteins in an exposure-dependent manner, with toxicity being driven by trough concentrations. Once-daily linezolid killed M. tuberculosis in an exposure-dependent manner. Further, 300 mg linezolid given every 12 hours generated more bacterial kill but more toxicity than 600 mg linezolid given once daily. None of the regimens prevented linezolid resistance. These findings show that with linezolid monotherapy, a clear tradeoff exists between antibacterial activity and toxicity. By identifying the pharmacokinetic parameters linked with toxicity and antibacterial activity, these data can provide guidance for clinical trials evaluating linezolid in multidrug antituberculosis regimens. IMPORTANCE: The emergence and spread of multidrug-resistant M. tuberculosis are a major threat to global public health. Linezolid is an oxazolidinone that is licensed for human use and has demonstrated potent activity against multidrug-resistant M. tuberculosis. However, long-term use of linezolid has shown to be toxic in patients, often resulting in thrombocytopenia. We examined therapeutic linezolid regimens in an in vitro model to characterize the exposure-toxicity relationship. The antibacterial activity against M. tuberculosis was also assessed for these regimens, including the amplification or suppression of resistant mutant subpopulations by the chosen regimen. Higher exposures of linezolid resulted in greater antibacterial activity, but with more toxicity and, for some regimens, increased resistant mutant subpopulation amplification, illustrating the trade-off between activity and toxicity. These findings can provide valuable insight for designing optimal dosage regimens for linezolid that are part of the long combination courses used to treat multidrug-resistant M. tuberculosis.


Antitubercular Agents/administration & dosage , Antitubercular Agents/adverse effects , Linezolid/administration & dosage , Linezolid/adverse effects , Mycobacterium tuberculosis/drug effects , Tuberculosis/drug therapy , Cell Line , Cell Survival , Drug Evaluation, Preclinical , Humans , Microbial Viability , Models, Biological
16.
Clin Infect Dis ; 61Suppl 3: S200-16, 2015 Oct 15.
Article En | MEDLINE | ID: mdl-26409283

The lack of novel antimicrobial drugs in development for tuberculosis treatment has provided an impetus for the discovery of adjunctive host-directed therapies (HDTs). Several promising HDT candidates are being evaluated, but major advancement of tuberculosis HDTs will require understanding of the master or "core" cell signaling pathways that control intersecting immunologic and metabolic regulatory mechanisms, collectively described as "immunometabolism." Core regulatory pathways conserved in all eukaryotic cells include poly (ADP-ribose) polymerases (PARPs), sirtuins, AMP-activated protein kinase (AMPK), and mechanistic target of rapamycin (mTOR) signaling. Critical interactions of these signaling pathways with each other and their roles as master regulators of immunometabolic functions will be addressed, as well as how Mycobacterium tuberculosis is already known to influence various other cell signaling pathways interacting with them. Knowledge of these essential mechanisms of cell function regulation has led to breakthrough targeted treatment advances for many diseases, most prominently in oncology. Leveraging these exciting advances in precision medicine for the development of innovative next-generation HDTs may lead to entirely new paradigms for treatment and prevention of tuberculosis and other infectious diseases.


Antitubercular Agents/therapeutic use , Precision Medicine , Tuberculosis/drug therapy , Tuberculosis/metabolism , AMP-Activated Protein Kinases/metabolism , Humans , Mycobacterium tuberculosis/drug effects , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerases/metabolism , Precision Medicine/methods , Signal Transduction/drug effects , Signal Transduction/genetics , Sirtuins/metabolism , TOR Serine-Threonine Kinases/immunology , TOR Serine-Threonine Kinases/metabolism , Tuberculosis/immunology , Tuberculosis/prevention & control
17.
Lancet Infect Dis ; 15(6): 711-20, 2015 Jun.
Article En | MEDLINE | ID: mdl-25957923

Children younger than 18 years account for a substantial proportion of patients with tuberculosis worldwide. Available treatments for paediatric drug-susceptible and drug-resistant tuberculosis, albeit generally effective, are hampered by high pill burden, long duration of treatment, coexistent toxic effects, and an overall scarcity of suitable child-friendly formulations. Several new drugs and regimens with promising activity against both drug-susceptible and drug-resistant strains have entered clinical development and are either in various phases of clinical investigation or have received marketing authorisation for adults; however, none have data on their use in children. This consensus statement, generated from an international panel of opinion leaders on childhood tuberculosis and incorporating reviews of published literature from January, 2004, to May, 2014, addressed four key questions: what drugs or regimens should be prioritised for clinical trials in children? Which populations of children are high priorities for study? When can phase 1 or 2 studies be initiated in children? What are the relevant elements of clinical trial design? The consensus panel found that children can be included in studies at the early phases of drug development and should be an integral part of the clinical development plan, rather than studied after regulatory approval in adults is obtained.


Antitubercular Agents/therapeutic use , Clinical Trials as Topic , Tuberculosis/drug therapy , Adolescent , Adult , Age Factors , Child , Child, Preschool , Consensus , Female , Humans , Infant , Infant, Newborn , Male
18.
Antimicrob Agents Chemother ; 59(6): 3399-405, 2015.
Article En | MEDLINE | ID: mdl-25824215

Rifapentine is a potent antituberculosis drug currently in phase III trials. Bioavailability decreases with increasing dose, yet high daily exposures are likely needed to improve efficacy and shorten the tuberculosis treatment duration. Further, the limits of tolerability are poorly defined. The phase I multicenter trial in healthy adults described here investigated two strategies to increase rifapentine exposures: dividing the dose or giving the drug with a high-fat meal. In arm 1, rifapentine was administered at 10 mg/kg of body weight twice daily and 20 mg/kg once daily, each for 14 days, separated by a 28-day washout; the dosing sequence was randomized. In arm 2, 15 mg/kg rifapentine once daily was given with a high-fat versus a low-fat breakfast. Sampling for pharmacokinetic analysis was performed on days 1 and 14. Population pharmacokinetic analyses were performed. This trial was stopped early for poor tolerability and because of safety concerns. Of 44 subjects, 20 discontinued prematurely; 11 of these discontinued for protocol-defined toxicity (a grade 3 or higher adverse event or grade 2 or higher rifamycin hypersensitivity). Taking rifapentine with a high-fat meal increased the median steady-state area under the concentration-time curve from time zero to 24 h (AUC0-24ss) by 31% (relative standard error, 6%) compared to that obtained when the drug was taken with a low-fat breakfast. Dividing the dose increased exposures substantially (e.g., 38% with 1,500 mg/day). AUC0-24ss was uniformly higher in our study than in recent tuberculosis treatment trials, in which toxicity was rare. In conclusion, two strategies to increase rifapentine exposures, dividing the dose or giving it with a high-fat breakfast, successfully increased exposures, but toxicity was common in healthy adults. The limits of tolerability in patients with tuberculosis remain to be defined. (AIDS Clinical Trials Group study A5311 has been registered at ClinicalTrials.gov under registration no. NCT01574638.).


Antitubercular Agents/administration & dosage , Antitubercular Agents/adverse effects , Rifampin/analogs & derivatives , Adolescent , Adult , Aged , Antitubercular Agents/pharmacokinetics , Drug Administration Schedule , Female , Healthy Volunteers , Humans , Male , Middle Aged , Rifampin/administration & dosage , Rifampin/adverse effects , Rifampin/pharmacokinetics , Young Adult
19.
Nat Rev Immunol ; 15(4): 255-63, 2015 Apr.
Article En | MEDLINE | ID: mdl-25765201

Improved treatments are needed for nearly all forms of Mycobacterium tuberculosis infection. Adjunctive host-directed therapies have the potential to shorten tuberculosis treatment duration, prevent resistance and reduce lung injury by promoting autophagy, antimicrobial peptide production and other macrophage effector mechanisms, as well as by modifying specific mechanisms that cause lung inflammation and matrix destruction. The range of candidates is broad, including several agents approved for other clinical indications that are ready for evaluation in Phase II clinical trials. The promise of new and existing host-directed therapies that could accelerate response and improve tuberculosis treatment outcomes is discussed in this Opinion article.


Mycobacterium tuberculosis/immunology , Tuberculosis/immunology , Tuberculosis/therapy , Host-Pathogen Interactions/immunology , Humans , Immunity , Inflammation/immunology
20.
Lancet Infect Dis ; 13(6): 529-39, 2013 Jun.
Article En | MEDLINE | ID: mdl-23531391

Two decades ago, WHO declared tuberculosis a global emergency, and invested in the highly cost-effective directly observed treatment short-course programme to control the epidemic. At that time, most strains of Mycobacterium tuberculosis were susceptible to first-line tuberculosis drugs, and drug resistance was not a major issue. However, in 2013, tuberculosis remains a major public health concern worldwide, with prevalence of multidrug-resistant (MDR) tuberculosis rising. WHO estimates roughly 630 000 cases of MDR tuberculosis worldwide, with great variation in the frequency of MDR tuberculosis between countries. In the past 8 years, extensively drug-resistant (XDR) tuberculosis has emerged, and has been reported in 84 countries, heralding the possibility of virtually untreatable tuberculosis. Increased population movement, the continuing HIV pandemic, and the rise in MDR tuberculosis pose formidable challenges to the global control of tuberculosis. We provide an overview of the global burden of drug-resistant disease; discuss the social, health service, management, and control issues that fuel and sustain the epidemic; and suggest specific recommendations for important next steps. Visionary political leadership is needed to curb the rise of MDR and XDR tuberculosis worldwide, through sustained funding and the implementation of global and regional action plans.


Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/isolation & purification , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology , Antitubercular Agents/therapeutic use , Global Health , Humans , Prevalence , World Health Organization
...