Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Front Vet Sci ; 11: 1421153, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091391

RESUMEN

The very virulent infectious bursal disease virus (vvIBDV) induces an acute, highly contagious and immunosuppressive disease in younger chicken causing massive economic losses globally. A major challenge in the field's clinical diagnosis is distinguishing gross lesions caused by vvIBDV from those induced by classic IBDV (cIBDV), commonly used as live attenuated vaccines. This study introduces a one-step multiplex real-time PCR assay designed to distinguish between vvIBDV and non-vvIBDV viruses. Via simultaneously targeting the VP2 sequence for vvIBDV detection and the VP1 sequence for non-vvIBDV identification, including classic, American variant and the recently emerged novel variant IBDV (nvarIBDV), the assay's specificity was validated against common avian viral diseases and nonspecific IBDV strains without any observed cross-reactions. It effectively differentiated between vvIBDV and non-vvIBDV field samples, including nvarIBDV, as confirmed by genotyping based on VP2 sequencing. The assay demonstrated a limit of detection ranging from 1.9×1010 to 103 DNA copies for vvIBDV-VP2, 9.2×1010 to 103 DNA copies for classic strains, and 1.2×1011 to 104 DNA copies for nvarIBDV in VP1 detection of non-vvIBDV. In conclusion, this study presents a specific, sensitive, and straight forward multiplex real-time PCR assay.

2.
Avian Pathol ; 53(5): 419-429, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38784976

RESUMEN

Since the detection of antigenically atypical very virulent Infectious bursal disease viruses (vvIBDV) in Egypt in 1999, the country has been experiencing recurrent outbreaks with high mortality rates and typical gross lesions associated with typical vvIBDV. However, a significant change occurred in 2023, marked by a notable increase in reported subclinical IBDV cases. To evaluate the field situation, samples from 21 farms in 2023 and 18 farms from 2021 and 2022, all of which had experienced IBD outbreaks based on clinical diagnosis, were collected, and subjected to VP2-HVR sequencing. Phylogenetic analysis revealed that all samples collected in 2021 and 2022 clustered with classical virulent strains and vvIBDV. In 2023, one sample clustered with the Egyptian vvIBDV, another with classical virulent IBDV, and the rest with the novel variant IBDV (nVarIBDV) circulating in China. The alignment of deduced amino acid sequences for VP2 showed that all Egyptian classic virulent strains were identical to the Winterfield or Lukert strains, while vvIBDV strains exhibited two out of the three typical residues found in Egyptian vvIBDV, namely Y220F and G254S, but not A321T. Meanwhile, all Egyptian variant strains exhibited typical residues found in nVarIBDV. However, all Egyptian variants showed a mutation at position 321 (321V), which represents the most exposed part of the capsid and is known to have a massive impact on IBDV antigenicity, except for one sample that had 318G instead. This report highlights the emergence of a new variant IBDV in Egypt, clustered with the Chinese new variants, spreading subclinically in broiler farms across a wide geographic area.RESEARCH HIGHLIGHTS New variant IBDV which emerged in Egypt clustered with Chinese nVarIBDV.nVarIBDV spread subclinically across a wide geographic area.Mutation at 321 represents capsid's most exposed part, a defining feature.Antigenically modified vvIBDV still circulating in Egypt with typical lesions.


Asunto(s)
Infecciones por Birnaviridae , Pollos , Virus de la Enfermedad Infecciosa de la Bolsa , Filogenia , Enfermedades de las Aves de Corral , Virus de la Enfermedad Infecciosa de la Bolsa/genética , Virus de la Enfermedad Infecciosa de la Bolsa/patogenicidad , Virus de la Enfermedad Infecciosa de la Bolsa/aislamiento & purificación , Animales , Egipto/epidemiología , Infecciones por Birnaviridae/veterinaria , Infecciones por Birnaviridae/virología , Infecciones por Birnaviridae/epidemiología , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/epidemiología , Pollos/virología , Brotes de Enfermedades/veterinaria , Secuencia de Aminoácidos , Vacunas Virales/inmunología , Vacunación/veterinaria , Proteínas Estructurales Virales/genética , Virulencia , Variación Genética
3.
Vet Immunol Immunopathol ; 267: 110683, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38061231

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has translated into a worldwide economic recession and public health crisis. Bats have been incriminated as the main natural host for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative agent of the COVID-19 pandemic. However, the reservoir and carrier hosts of the virus remain unknown. Therefore, a cross sectional serosurvey study was performed to estimate antibodies to SARS-CoV-2. To assess IgM antibodies to SARS-CoV-2 nucleocapsid protein (NP), a SARS-CoV-2 Double Antigen Multispecies diagnostic enzyme-linked immunosorbent assay kit was used. The seropositive samples were confirmed and validated by measuring IgG antibody titers in sera. The enrolled animals were from different locations in the Giza governorate, Egypt, and were sampled at the time of the pandemic; they comprised 92 companion animals and 92 domestic camels. The study established that 4.76% (1/21 clinical samples) of dogs, 7.69% of cats (1/13 shelter samples) and 1.08% (1/92) of camels, had measurable SARS-CoV-2 NP IgM antibodies. All IgM-seropositive samples were IgG positive with a measurable titer of 34.5, 28.6, and 25.8 UI/mL for dog, cat, and camels, respectively. According to our best knowledge, this study was the first to assess SARS-CoV-2 seroprevalence in the specific animals investigated in Egypt. These results may herald a promising epidemiological role for pet animals and camels in SARS-CoV-2 virus maintenance. Thus, our study's results ought to be confirmed with a nationwide seroprevalence study, and further studies are required to clarify whether these animals act as active or passive carriers.


Asunto(s)
COVID-19 , Enfermedades de los Perros , Animales , Perros , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/veterinaria , Camelus , Estudios Seroepidemiológicos , Egipto/epidemiología , Pandemias , Estudios Transversales , Anticuerpos Antivirales , Ensayo de Inmunoadsorción Enzimática/veterinaria , Inmunoglobulina M , Enfermedades de los Perros/epidemiología
4.
BMC Vet Res ; 19(1): 228, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919680

RESUMEN

BACKGROUND: Middle East respiratory syndrome coronavirus (MERS-CoV) was identified in humans in 2012. Since then, 2605 cases and 937 associated deaths have been reported globally. Camels are the natural host for MERS-CoV and camel to human transmission has been documented. The relationship between MERS-CoV shedding and presence of neutralizing antibodies in camels is critical to inform surveillance and control, including future deployment of camel vaccines. However, it remains poorly understood. The longitudinal study conducted in a closed camel herd in Egypt between December 2019 and March 2020 helped to characterize the kinetics of MERS-CoV neutralizing antibodies and its relation with viral shedding. RESULTS: During the 100-day longitudinal study, 27 out of 54 camels (50%) consistently tested negative for presence of antibodies against MERS-CoV, 19 (35.2%) tested positive and 8 (14.8%) had both, positive and negative test results. Fourteen events that could be interpreted as serological indication of probable infection (two seroconversions and twelve instances of positive camels more than doubling their optical density ratio (OD ratio) in consecutive samples) were identified. Observed times between the identified events provided strong evidence (p = 0.002) against the null hypothesis that they occurred with constant rate during the study, as opposed to clustering at certain points in time. A generalized additive model showed that optical density ratio (OD ratio) is positively associated with being an adult and varies across individual camels and days, peaking at around days 20 and 90 of the study. Despite serological indication of probable virus circulation and intense repeated sampling, none of the tested nasal swab samples were positive for MERS-CoV RNA, suggesting that, if the identified serological responses are the result of virus circulation, the virus may be present in nasal tissue of infected camels during a very narrow time window. CONCLUSIONS: Longitudinal testing of a closed camel herd with past history of MERS-CoV infection is compatible with the virus continuing to circulate in the herd despite lack of contact with other camels. It is likely that episodes of MERS-CoV infection in camels can take place with minimal presence of the virus in their nasal tissues, which has important implications for future surveillance and control of MERS-CoV in camel herds and prevention of its zoonotic transmission.


Asunto(s)
Infecciones por Coronavirus , Coronavirus del Síndrome Respiratorio de Oriente Medio , Animales , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Camelus , Estudios Longitudinales , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/veterinaria , Anticuerpos Neutralizantes
5.
Vaccines (Basel) ; 11(9)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37766075

RESUMEN

Controlling avian influenza viruses (AIVs) is mainly based on culling of the infected bird flocks or via the implementation of inactivated vaccines in countries where AIVs are considered to be endemic. Over the last decade, several avian influenza virus subtypes, including highly pathogenic avian influenza (HPAI) H5N1 clade 2.2.1.2, H5N8 clade 2.3.4.4b and the recent H5N1 clade 2.3.4.4b, have been reported among poultry populations in Egypt. This demanded the utilization of a nationwide routine vaccination program in the poultry sector. Antigenic differences between available avian influenza vaccines and the currently circulating H5Nx strains were reported, calling for an updated vaccine for homogenous strains. In this study, three H5Nx vaccines were generated by utilizing the reverse genetic system: rgH5N1_2.3.4.4, rgH5N8_2.3.4.4 and rgH5N1_2.2.1.2. Further, the immunogenicity and the cross-reactivity of the generated inactivated vaccines were assessed in the chicken model against a panel of homologous and heterologous H5Nx HPAIVs. Interestingly, the rgH5N1_2.3.4.4 induced high immunogenicity in specific-pathogen-free (SPF) chicken and could efficiently protect immunized chickens against challenge infection with HPAIV H5N1_2.3.4.4, H5N8_2.3.4.4 and H5N1_2.2.1.2. In parallel, the rgH5N1_2.2.1.2 could partially protect SPF chickens against infection with HPAIV H5N1_2.3.4.4 and H5N8_2.3.4.4. Conversely, the raised antibodies to rgH5N1_2.3.4.4 could provide full protection against HPAIV H5N1_2.3.4.4 and HPAIV H5N8_2.3.4.4, and partial protection (60%) against HPAIV H5N1_2.2.1.2. Compared to rgH5N8_2.3.4.4 and rgH5N1_2.2.1.2 vaccines, chickens vaccinated with rgH5N1_2.3.4.4 showed lower viral shedding following challenge infection with the predefined HPAIVs. These data emphasize the superior immunogenicity and cross-protective efficacy of the rgH5N1_2.3.4.4 in comparison to rgH5N8_2.3.4.4 and rgH5N1_2.2.1.2.

6.
Sci Rep ; 13(1): 15140, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704638

RESUMEN

Gold nanoparticles (GNPs) biosensors can detect low viral loads and differentiate between viruses types, enabling early diagnosis and effective disease management. In the present study, we developed GNPs biosensors with two different capping agent, citrate-GNPs biosensors and polyvinylpyrrolidone (PVP)-GNPs biosensors for detection of EHV-1 and EHV-4 in multiplex real time PCR (rPCR). Citrate-GNPs and PVP-GNPs biosensors can detect dilution 1010 of EHV-1 with mean Cycle threshold (Ct) 11.7 and 9.6, respectively and one copy as limit of detection, while citrate-GNPs and PVP-GNPs biosensors can detect dilution 1010 of EHV-4 with mean Ct 10.5 and 9.2, respectively and one copy as limit of detection. These findings were confirmed by testing 87 different clinical samples, 4 more samples were positive with multiplex GNPs biosensors rPCR than multiplex rPCR. Multiplex citrate-GNPs and PVP-GNPs biosensors for EHV-1 and EHV-4 are a significant breakthrough in the diagnosis of these virus types. These biosensors offer high sensitivity and specificity, allowing for the accurate detection of the target viruses at very low concentrations and improve the early detection of EHV-1 and EHV-4, leading to faster control of infected animals to prevent the spread of these viruses.


Asunto(s)
Herpesvirus Équido 1 , Nanopartículas del Metal , Animales , Caballos , Oro , Genotipo , Citratos , Ácido Cítrico , Herpesvirus Équido 1/genética , Povidona
7.
Vet World ; 16(7): 1429-1437, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37621542

RESUMEN

Background and Aim: Foot-and-mouth disease (FMD) virus causes continuous outbreaks, leading to serious economic consequences that affect animal productivity and restrict trade movement. The potential influence of the disease was due to the emergence of new strains or re-emergence of local strains with major antigenic variations due to genetic mutations. This study aims to evaluate circulating virus in samples collected from infected animals during an outbreak using antigenic characterization and identify whether there is an emergence of a new strain or mutation. Materials and Methods: Reverse-transcription polymerase chain reaction (RT-PCR) was used to screen 86 samples. Viral protein 1 (VP1) codon sequencing was performed. The virus was isolated from the samples inoculated on the baby-hamster kidney cell line and Enzyme-linked immunosorbent assay was performed for serotyping and antigen detection. Results: Based on the RT-PCR screening results, 10 positive samples were selected for sequencing. The sequences belonged to the FMD serotype A African topotype originating from the ancestor prototype Sudan/77, with which it shared 98.48% ± 1.2% similarity. The divergence with local isolates from 2020 was 9.3%. In addition, the sequences were 96.84% ± 1.01% and 95.84% ± 0.79% related to Egyptian-Damietta type 2016 and Sudanese-2018, respectively. Divergence with vaccinal strains ranged from 10% to 17%. Amino acid sequence analysis revealed that the isolates had variation in the most prominent antigenic regions (residues 35-75) and the immunogenic determinants of the G-H loop of VP1 (residues 100-146 and 161-175). Conclusion: The current isolates should be included in the locally produced vaccine to provide broader immunogenic coverage against serotype A African topotypes.

8.
Int J Vet Sci Med ; 11(1): 55-86, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37441062

RESUMEN

COVID-19 outbreak was first reported in 2019, Wuhan, China. The spillover of the disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), to a wide range of pet, zoo, wild, and farm animals has emphasized potential zoonotic and reverse zoonotic viral transmission. Furthermore, it has evoked inquiries about susceptibility of different animal species to SARS-CoV-2 infection and role of these animals as viral reservoirs. Therefore, studying susceptible and non-susceptible hosts for SARS-CoV-2 infection could give a better understanding for the virus and will help in preventing further outbreaks. Here, we review structural aspects of SARS-CoV-2 spike protein, the effect of the different mutations observed in the spike protein, and the impact of ACE2 receptor variations in different animal hosts on inter-species transmission. Moreover, the SARS-CoV-2 spillover chain was reviewed. Combination of SARS-CoV-2 high mutation rate and homology of cellular ACE2 receptors enable the virus to transcend species barriers and facilitate its transmission between humans and animals.

9.
Pathogens ; 12(1)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36678438

RESUMEN

Wild migratory birds have the capability to spread avian influenza virus (AIV) over long distances as well as transmit the virus to domestic birds. In this study, swab and tissue samples were obtained from 190 migratory birds during close surveillance in Egypt in response to the recent outbreaks of the highly pathogenic avian influenza (HPAI) H5N1 virus. The collected samples were tested for a variety of AIV subtypes (H5N1, H9N2, H5N8, and H6N2) as well as other pathogens such as NDV, IBV, ILT, IBDV, and WNV. Among all of the tested samples, the HPAI H5N1 virus was found in six samples; the other samples were found to be negative for all of the tested pathogens. The Egyptian HPAI H5N1 strains shared genetic traits with the HPAI H5N1 strains that are currently being reported in Europe, North America, Asia, and Africa in 2021-2022. Whole genome sequencing revealed markers associated with mammalian adaption and virulence traits among different gene segments, similar to those found in HPAI H5N1 strains detected in Europe and Africa. The detection of the HPAI H5N1 strain of clade 2.3.4.4b in wild birds in Egypt underlines the risk of the introduction of this strain into the local poultry population. Hence, there is reason to be vigilant and continue epidemiological and molecular monitoring of the AIV in close proximity to the domestic-wild bird interface.

10.
Vet Med Sci ; 9(1): 13-24, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36516308

RESUMEN

BACKGROUND: Reverse zoonoses occur because of interactions between humans and animals. Homology of ACE-2 cell receptors in different hosts and high mutation rate of SARS-CoV-2 enhance viral transmission among species. OBJECTIVES: This study aimed to investigate spillover of SARS-CoV-2 between humans and companion animals. METHODS: A cross-sectional study was constructed using nasopharyngeal/oropharyngeal swabs, serum and blood samples collected from 66 companion animals (33 cats and 33 dogs) that were in contact with SARS-CoV-2-positive owners from December 2020 to March 2021. Swabs were screened by rRT-PCR and some positive cases were confirmed by partial spike gene sequencing. Clinical pathology and pathological studies were also performed. RESULTS: Our findings revealed that 30% of cats (10/33) and 24% of dogs (8/33) were SARS-CoV-2 positive. While 33% of these animals were asymptomatic (6/18), 28% showed mild respiratory signs (5/18) and 39% displayed severe respiratory signs (7/18) including 4 dead cats 40% (4/10). Partial spike gene sequencing of 6 positive samples collected in December 2020 were identical to SARS-CoV-2 that was detected in humans in Egypt in that time frame. Clinical pathology findings revealed thrombocytopenia, lymphocytopenia, as well as elevated levels of D-dimer, LDH, CRP, and ferritin. Post-mortem and histopathological examinations illustrated multisystemic effects. CONCLUSIONS: There is a potential occurrence of SARS-CoV-2 spillover between humans and pet animals. IMPACTS: The present study highlighted the potential occurrence of SARS-CoV-2 spillover between humans and their companion animals. Biosecurity measures should be applied to decrease spread of SARS-CoV-2 among humans and pet animals.


Asunto(s)
COVID-19 , Enfermedades de los Perros , Animales , Perros , Humanos , COVID-19/epidemiología , COVID-19/veterinaria , Estudios Transversales , Enfermedades de los Perros/epidemiología , Egipto/epidemiología , Mascotas , SARS-CoV-2 , Gatos , Zoonosis Virales
11.
Equine Vet J ; 55(3): 487-493, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35665534

RESUMEN

BACKGROUND: Lavender foal syndrome (LFS) is a fatal hereditary condition that is inherited in an autosomal recessive pattern. This detrimental mutation is more common in Arabian foals of Egyptian origin than foals from other bloodlines. Heterozygous horses are carriers of the LFS trait and appear normal, while recessive homozygous foals died shortly after birth due to serious complications. In Egypt, in 2014, an Egyptian foal died after manifestations of neurological signs and abnormal coat colour as LFS signs. Therefore, it is important to identify LFS carriers in the population of Arabian horses in Egypt and to encourage improvement of the Arabian horse industry in Egypt by constructing a breeding system based on genetic background in order to avoid mating between carriers and reduce financial losses from deaths of affected foals. OBJECTIVES: To establish a PCR-based test for detecting the MYO5A gene mutation causing LFS in the registered Arabian horse population in Egypt prior to breeding. STUDY DESIGN: Cross sectional survey (n = 170) plus targeted sampling (n = 30). METHODS: A total of 200 samples were collected from an Arabian farm in Egypt and some of them were traced for LFS based on the farm records. The LFS genotypes were identified using the PCR-RFLP technique, fragment analysis followed by sequence analysis. RESULTS: The overall mutated allele and genotype frequencies (N/L) were 0.08 and 16%, respectively. CONCLUSION: The observed frequency of heterozygotes suggests foals affected with LFS will be produced among Arabian horses in Egypt. Therefore, screening of the entire population for this mutation should be undertaken in the breeding program.


Asunto(s)
Enfermedades de los Caballos , Animales , Estudios Transversales , Egipto/epidemiología , Genotipo , Enfermedades de los Caballos/epidemiología , Enfermedades de los Caballos/genética , Caballos , Miosina Tipo V/genética , Síndrome , Mutación
12.
Virus Res ; 323: 198960, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36209919

RESUMEN

A newly emerging and exotic foot-and-mouth disease virus (FMDV) caused a recent outbreak of serotype A in Egypt in 2022, which affected cattle and water buffalo. Previous phylogenetic studies on FMDV circulating in Egypt have mainly focused on genomic regions encoding the structural proteins which determine FMDV serotype. No study has yet determined structural proteins sequences of the newly emerging Europe-South America (EURO-SA) lineage which was recently isolated from Egypt during a routine surveillance in 2022. The objective of the current study was to analyze the structural proteins of the Venezuelan type which belongs to EURO-SA. The new isolate was related to serotype A lineage Euro-South America. Phylogentic analyses have reveled that the newly isolated lineage samples were closely related to reported sequences that have been identified in Venzuela and Colombia. Analysis of structural protein sequences revealed the recent isolates belong to prototype strain A24 Cruzeiro. Notably, nucleotide sequences of the Egyptian isolate was related to Venezuelan, Brazilian, and Colombian strains with identity not exceeding 90%. The divergence which appears in the genetic identity of the Egyptian A/EURO-SA lineage from other related strains may be attributed to the absence of Euro-SA lineage sequence from Egypt. The present study is the first report on the detection of EURO-SA lineage in Egypt. The recent detection of the EURO-SA lineage samples may be explained due to imported animals from Colombia or Brazil which share geographical borders with Venezuela. The findings of the present study highlight the significance of continuous monitoring of FMDV in Egypt for newly emerging FMDVs.

13.
Viruses ; 14(8)2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-36016379

RESUMEN

The highly pathogenic avian influenza (HPAI) H5N8 virus was first detected in Egypt in late 2016. Since then, the virus has spread rapidly among different poultry sectors, becoming the dominant HPAI H5 subtype reported in Egypt. Different genotypes of the HPAI H5N8 virus were reported in Egypt; however, the geographic patterns and molecular evolution of the Egyptian HPAI H5N8 viruses are still unclear. Here, extensive epidemiological surveillance was conducted, including more than half a million samples collected from different poultry sectors (farms/backyards/live bird markets) from all governorates in Egypt during 2019-2021. In addition, genetic characterization and evolutionary analyses were performed using 47 selected positive H5N8 isolates obtained during the same period. The result of the conducted surveillance showed that HPAI H5N8 viruses of clade 2.3.4.4b continue to circulate in different locations in Egypt, with an obvious seasonal pattern, and no further detection of the HPAI H5N1 virus of clade 2.2.1.2 was observed in the poultry population during 2019-2021. In addition, phylogenetic and Bayesian analyses revealed that two major genotypes (G5 and G6) of HPAI H5N8 viruses were continually expanding among the poultry sectors in Egypt. Notably, molecular dating analysis suggested that the Egyptian HPAI H5N8 virus is the potential ancestral viruses of the European H5N8 viruses of 2020-2021. In summary, the data of this study highlight the current epidemiology, diversity, and evolution of HPAI H5N8 viruses in Egypt and call for continuous monitoring of the genetic features of the avian influenza viruses in Egypt.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , Teorema de Bayes , Egipto/epidemiología , Humanos , Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Epidemiología Molecular , Filogenia , Aves de Corral
14.
Front Cell Infect Microbiol ; 12: 875123, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35719353

RESUMEN

The high frequency of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) mutations and homology of the Angiotensin-Converting Enzyme-2 (ACE2) cell receptors in various hosts help the virus transcend species barriers. In this study, we investigated the mutations of the SARS-CoV-2 spike glycoprotein detected in cats and their effect on its structure and function. Interestingly, some of these mutations are reported here in cats for the first time. Structural analysis showed seven residue substitutions in the spike glycoprotein. Four of the detected mutations are located on the spike surface, which are critical interaction points for neutralizing antibodies. Furthermore, three of the reported mutations could facilitate viral binding to the ACE2 host receptor, influence S1/S2 cleavage, destabilize the ß-hairpin structure of the S2 and enhance viral infectivity. Structural modeling and phylogenic analysis of the ACE2 receptor provided an indication of the binding capacity of the virus to the specific cell receptors of different species and hosts. The presented work highlights the effects of the residue substitutions on viral evasion, infectivity and possibility of SARS-CoV-2 spillover between humans and cats. In addition, the work paves the way for in-depth molecular investigation into the relationship between SARS-CoV-2 receptor binding and host susceptibility.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Enzima Convertidora de Angiotensina 2/genética , Animales , Gatos , Mutación , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
15.
Viruses ; 14(5)2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35632771

RESUMEN

Since it was first discovered, the low pathogenic avian influenza (LPAI) H9N2 subtype has established linages infecting the poultry population globally and has become one of the most prevalent influenza subtypes in domestic poultry. Several different variants and genotypes of LPAI H9N2 viruses have been reported in Egypt, but little is known about their pathogenicity and how they have evolved. In this study, four different Egyptian LPAI H9N2 viruses were genetically and antigenically characterized and compared to representative H9N2 viruses from G1 lineage. Furthermore, the pathogenicity of three genetically distinct Egyptian LPAI H9N2 viruses was assessed by experimental infection in chickens. Whole-genome sequencing revealed that the H9N2 virus of the Egy-2 G1-B lineage (pigeon-like) has become the dominant circulating H9N2 genotype in Egypt since 2016. Considerable variation in virus shedding at day 7 post-infections was detected in infected chickens, but no significant difference in pathogenicity was found between the infected groups. The rapid spread and emergence of new genotypes of the influenza viruses pinpoint the importance of continuous surveillance for the detection of novel reassortant viruses, as well as monitoring the viral evolution.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Animales , Pollos , Variación Genética , Subtipo H9N2 del Virus de la Influenza A/genética , Filogenia , Virulencia
16.
Biology (Basel) ; 11(4)2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35453764

RESUMEN

Over 400 of the 3800 tropical avian species are endangered or threatened. One of many solutions to conserve animal biodiversity is breeding animals in zoos or private animal farms. Animal breeding programs are difficult to implement in species with sexual monomorphism, such as parrots. Molecular biology methods offer a solution to determine the sex of these species. Therefore, in this study, we aimed to test the performance of PCR and LAMP techniques on sex identification for 21 parrot species belonging to three families, i.e., Psittacidae, Cacatuidae, and Psittaculidae. We established a protocol for DNA isolation from feathers in our laboratory and found optimal conditions for PCR and LAMP. We showed that the LAMP method with the use of the PSI-W primers set, developed by Centeno-Cuadros, functions in 17 previously untested species. Moreover, we found that further improvements are required in universal LAMP primers for the detection of parrot DNA, which are necessary for confirmation of the male sex. The LAMP method also proved to be more sensitive for female sex identification in contrast to the reference PCR test. Therefore, we conclude that LAMP is a suitable method for the routine diagnostic sex identification of parrots.

17.
J Virol Methods ; 306: 114525, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35337855

RESUMEN

Foot-and-mouth disease (FMD) is an extremely contagious and economically important viral disease affecting livestock. Rapid and precise diagnosis of FMD is of critical importance for efficient control and surveillance strategies of the disease. In this study, one-step real-time reverse transcription-polymerase chain reaction (RT-qPCR) assays were developed using newly designed primers/probe sets in the conserved regions within the VP1 coding sequence for specific detection of FMDV serotypes SAT 2 and O with their different lineage circulating in Egypt. The assays were validated for efficacy to detect different lineages of these endemic FMDV serotypes in Egypt; the detection limit was 10 genomic copies for serotype SAT 2 and one genomic copy for serotype O, with no cross-reactivity observed. These findings were confirmed by the specific and sensitive detection of FMDV in clinical samples obtained from different regions in Egypt and representing a range of subtypes within the SAT 2 and O serotypes. The results illustrated the potential of tailored RT-qPCR methods for the rapid detection and serotyping of FMDV belonging to different lineages of serotypes SAT 2 and O circulating in Egypt with high sensitivity and specificity. The developed assays could be easily deployed for routine surveillance and hence improving the disease control measures.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Egipto/epidemiología , Virus de la Fiebre Aftosa/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Serogrupo
18.
Curr Stem Cell Res Ther ; 17(4): 370-388, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35236271

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by progressive cognitive deterioration. All recent therapeutic strategies tend to inhibit the generation of the Aß peptide. These approaches tend to mediate both α - and γ -secretases to undergo the nonamyloidogenic pathway. ADAM10 is the main α-secretase that cleaves APP, and it is regulated by the metabolic product of vitamin A (retinoic acid), which is being widely used recently in AD research as a target for treatment. Mesenchymal stem cells (MSCs) are also used recently as a promising regenerative therapy for AD. OBJECTIVES: The present study aimed to: (1) study the effect of MSCs with/without acitretin on the regulation of Adam10 gene expression in AlCl3-induced AD rat model, and (2) validate the hypothesis that AD is a time-dependent progressive disease that spreads spontaneously even after the stopping of exposure to AlCl3. METHODS: The experimental work has been designed to include three successive phases; AlCl3 induction phase (I), AlCl3 withdrawal phase (W), and therapeutic phase (T). Forty-five male albino Wistar rats were randomly divided into 2 main groups: the control (C) group (15 rats) and AD group (30 rats). The therapeutic potential of MSCs with/without acitretin has been evaluated at behavioral, physiological, molecular, and histopathological levels. RESULTS: Among the three therapeutic groups, combined administration of both MSC and acitretin showed the best compensatory effects on most of the measured parameters. CONCLUSION: The present study approved that AD is a time-dependent progressive disease which spreads spontaneously without more AlCl3 exposure.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Mesenquimatosas , Enfermedades Neurodegenerativas , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Proteína ADAM10/uso terapéutico , Acitretina/metabolismo , Acitretina/farmacología , Acitretina/uso terapéutico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/terapia , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/uso terapéutico , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/uso terapéutico , Animales , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratas
19.
Animals (Basel) ; 12(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35158668

RESUMEN

Colonization of food chain animals such as chickens with extended-spectrum ß-lactamases (ESBL) poses a major health threat to human. The current study aimed to determine the phenotypic and genotypic relationship between ESBL-producing E. coli from diseased human and chickens in Egypt. A total of 56 out of 120 chicken farms (46.7%) and 9 human samples (100%) were phenotypically and genotypically identified with at least one ESBL-phenotype/gene. Chicken isolates showed a high proportion of beta lactamase from CTX-M group 9 > TEM > PER families, followed by CTX-M group 1 > SHV > GES > OXA group10 > VEB > OXA group2 families, while human isolates only contained the CTX-M family. A high incidence of ESBL genes from the CTX-M family was recognized in both human and chicken isolates. Furthermore, nucleotide identity showed high similarity between chicken and human isolates. In conclusion, the current study traced phenotypes and genotypes of ESBL-producing E. coli from chickens and human samples in Egypt, reporting degrees of similarity that suggest potential zoonotic transmission. Our data highlighted the significant importance of chicken as a major food source not only in Egypt but all over the world in the spreading of ESBL-producing E. coli to human.

20.
Virol J ; 19(1): 1, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34980196

RESUMEN

BACKGROUND: Surveillance for circulating emerging diseases of economic importance has a major role in the rapid response to major pathogen outbreaks. Foot-and-mouth disease virus (FMDV) is one of the significant endemic viruses in Egypt. FMDV is periodically investigated for monitoring evolution and emergence of new variants. The genetic characterization of foot-and-mouth disease (FMD) virus serotype A responsible for recent outbreaks of FMD in Egypt was determined. METHODS: Samples were collected from different locations and virus isolation was performed using BHK-21 cells. Viral RNA was extracted and samples were screened for FMDV using real-time RT-PCR. DNA sequence analysis was performed and computational and bioinformatics analyses were used to determine the substitution rates and phylogenetic relationship. RESULTS: Sequence and phylogenetic analyses of full-length 1D region of FMDV samples collected from different governorates in 2020 showed close similarity to Egyptian FMDV strains from serotype A-African topotype-G-IV with genetic variation of 6.5%. Recently isolated FMDV strains showed high genetic variations from locally used vaccine strains in the major antigenic sites of VP1 region. CONCLUSIONS: Although, efforts made by the veterinary authorities to implement an effective mass vaccination plan, the recently detected FMDV strains in this study could not be subtyped using the FMDV primers routinely used for molecular serotyping. These dissimilarities raise the alarm for reconsideration of the FMDV isolates used in vaccine manufacture. Clearly close monitoring of FMD in Egypt is urgently required to define the risks of future outbreaks and to ensure appropriate control measures against FMD major outbreaks.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Brotes de Enfermedades/veterinaria , Fiebre Aftosa/epidemiología , Variación Genética , Genotipo , Filogenia , Serogrupo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA