Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Cannabis Cannabinoid Res ; 6(6): 564-572, 2021 12.
Article En | MEDLINE | ID: mdl-33998902

Introduction: Despite increasing demand for data, little is known about the authorization patterns, safety, and effectiveness of medical cannabis products. Materials and Methods: We conducted a 2 year observational study of adult patients who were legally authorized a medical cannabis product from a single licensed producer; we captured and analyzed authorized cannabis use patterns by cannabinoid profile (tetrahydrocannabinol [THC]-dominant; cannabidiol [CBD]-dominant; and balanced (THC:CBD) and clinical outcomes using standardized outcome measures every 3 months for 12 months at a network of medical cannabis clinics in Quebec, Canada. Results: We recruited 585 patients (average age 56.5 years), of whom 61% identified as female and 85% reported pain as their primary complaint. Over 12 months, there was a significant increase in the number of products authorized (Z=2.59, p=0.01). The proportion of authorizations for a THC-dominant or CBD-dominant product increased relative to the proportion of authorizations for a balanced (THC:CBD) product (all p<0.01). Symptom improvement over time was observed for pain, tiredness, drowsiness, anxiety, and well-being. Patients authorized THC-dominant products exhibited less symptom improvement for anxiety and well-being relative to those authorized CBD-dominant or balanced (THC:CBD) products. Medical cannabis was well tolerated across all product profiles. Conclusion: These real-world data reveal changes in medical cannabis authorization patterns and suggest that symptom improvement may vary by cannabinoid profile over 12 months of follow-up.


Cannabidiol , Cannabis , Medical Marijuana , Adult , Cannabidiol/therapeutic use , Dronabinol/therapeutic use , Female , Humans , Medical Marijuana/adverse effects , Middle Aged , Quebec/epidemiology
2.
Eur Neuropsychopharmacol ; 25(12): 2381-93, 2015 Dec.
Article En | MEDLINE | ID: mdl-26508706

Antipsychotic treatment can produce supersensitivity to dopamine receptor stimulation. This compromises the efficacy of ongoing treatment and increases the risk of relapse to psychosis upon treatment cessation. Serotonin 5-HT2 receptors modulate dopamine function and thereby influence dopamine-dependent responses. Here we evaluated the hypothesis that 5-HT2 receptors modulate the behavioural expression of antipsychotic-induced dopamine supersensitivity. To this end, we first treated rats with the antipsychotic haloperidol using a clinically relevant treatment regimen. We then assessed the effects of a 5-HT2 receptor antagonist (ritanserin; 0.01 and 0.1mg/kg) and of a 5-HT2A receptor antagonist (MDL100,907; 0.025-0.1mg/kg) on amphetamine-induced psychomotor activity. Antipsychotic-treated rats showed increased amphetamine-induced locomotion relative to antipsychotic-naïve rats, indicating a dopamine supersensitive state. At the highest dose tested (0.1mg/kg for both antagonists), both ritanserin and MDL100,907 suppressed amphetamine-induced locomotion in antipsychotic-treated rats, while having no effect on this behaviour in control rats. In parallel, antipsychotic treatment decreased 5-HT2A receptor density in the prelimbic cortex and nucleus accumbens core and increased 5-HT2A receptor density in the caudate-putamen. Thus, activation of either 5-HT2 receptors or of 5-HT2A receptors selectively is required for the full expression of antipsychotic-induced dopamine supersensitivity. In addition, antipsychotic-induced dopamine supersensitivity enhances the ability of 5-HT2/5-HT2A receptors to modulate dopamine-dependent behaviours. These effects are potentially linked to changes in 5-HT2A receptor density in the prefrontal cortex and the striatum. These observations raise the possibility that blockade of 5-HT2A receptors might overcome some of the behavioural manifestations of antipsychotic-induced dopamine supersensitivity.


Antipsychotic Agents/pharmacology , Brain/drug effects , Dopamine/pharmacology , Locomotion/drug effects , Receptors, Serotonin, 5-HT2/metabolism , Amphetamine/pharmacology , Analysis of Variance , Animals , Brain/metabolism , Central Nervous System Stimulants/pharmacology , Dose-Response Relationship, Drug , Drug Administration Routes , Haloperidol/pharmacology , Male , Protein Binding/drug effects , Radioligand Assay , Rats , Rats, Sprague-Dawley , Serotonin Agents/pharmacology , Tritium/pharmacokinetics
...