Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Pollut Bull ; 207: 116858, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39159571

RESUMEN

Marine organisms' lipid metabolism contributes to marine ecosystems by producing a variety of lipid molecules. Historically, research focused on the lipid metabolism of the organisms themselves. Recent microbiome studies, however, have revealed that gut microbial communities influence the amount and type of lipids absorbed by organisms, thereby altering the organism's lipid metabolism. This has highlighted the growing importance of research on gut microbiota. This review highlights mechanisms by which gut microbiota facilitate lipid digestion and diversify the lipid pool in aquatic animals through the accelerated degradation of exogenous lipids and the transformation of lipid molecules. We also assess how environmental factors and pollutants, along with the innovative use of probiotics, interact with the gut microbiome to influence lipid metabolism within the host. We aim to elucidate the complex interactions between lipid metabolism and gut microbiota in aquatic animals by synthesizing current research and identifying knowledge gaps, providing a foundation for future explorations.

2.
Mar Pollut Bull ; 205: 116633, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936003

RESUMEN

In this study, we investigated the acute toxicity, in vivo effects, oxidative stress, and gene expression changes caused by hypoxia on the brackish water flea Diaphanosoma celebensis. The no-observed-effect concentration (NOEC) of 48 h of hypoxia exposure was found to be 2 mg/L O2. Chronic exposure to NOEC caused a significant decline in lifespan but had no effect on total fecundity. The induction of reactive oxygen species increased in a time-dependent manner over 48 h, whereas the content of antioxidant enzymes (superoxide dismutase and catalase) decreased. The transcription and translation levels were modulated by hypoxia exposure. In particular, a significant increase in hemoglobin level was followed by up-regulation of hypoxia-inducible factor 1α gene expression and activation of the mitogen-activated protein kinase pathway. In conclusion, our findings provide a better understanding of the molecular mechanism of the adverse effects of hypoxia in brackish water zooplankton.


Asunto(s)
Estrés Oxidativo , Especies Reactivas de Oxígeno , Animales , Especies Reactivas de Oxígeno/metabolismo , Cladóceros/efectos de los fármacos , Cladóceros/fisiología , Hipoxia , Superóxido Dismutasa/metabolismo , Catalasa/metabolismo , Oxígeno/metabolismo , Aguas Salinas
3.
J Hazard Mater ; 473: 134641, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38788572

RESUMEN

Here, we investigate the effects of acute and chronic exposure to arsenate (AsV) and arsenite (AsIII) in the marine medaka Oryzias melastigma. In vivo effects, biotransformation, and oxidative stress were studied in marine medaka exposed to the two inorganic arsenics for 4 or 28 days. An investigation of embryonic development revealed no effect on in vivo parameters, but the hatching rate increased in the group exposed to AsIII. Exposure to AsIII also caused the greatest accumulation of arsenic in medaka. For acute exposure, the ratio of AsV to AsIII was higher than that of chronic exposure, indicating that bioaccumulation of inorganic arsenic can induce oxidative stress. The largest increase in oxidative stress was observed following acute exposure to AsIII, but no significant degree of oxidative stress was induced by chronic exposure. During acute exposure to AsV, the increase in the enzymatic activity of glutathione-S-transferase (GST) was twice as high compared with exposure to AsIII, suggesting that GST plays an important role in the initial detoxification process. In addition, an RNA-seq-based ingenuity pathway analysis revealed that acute exposure to AsIII may be related to cell-cycle progression. A network analysis using differentially expressed genes also revealed a potential link between the generation of inflammatory cytokines and oxidative stress due to arsenic exposure.


Asunto(s)
Arseniatos , Glutatión Transferasa , Oryzias , Estrés Oxidativo , Contaminantes Químicos del Agua , Animales , Oryzias/metabolismo , Oryzias/genética , Estrés Oxidativo/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Arseniatos/toxicidad , Glutatión Transferasa/metabolismo , Glutatión Transferasa/genética , Arsenitos/toxicidad , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo
4.
Rev Fish Biol Fish ; 33(2): 317-347, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37122954

RESUMEN

A common goal among fisheries science professionals, stakeholders, and rights holders is to ensure the persistence and resilience of vibrant fish populations and sustainable, equitable fisheries in diverse aquatic ecosystems, from small headwater streams to offshore pelagic waters. Achieving this goal requires a complex intersection of science and management, and a recognition of the interconnections among people, place, and fish that govern these tightly coupled socioecological and sociotechnical systems. The World Fisheries Congress (WFC) convenes every four years and provides a unique global forum to debate and discuss threats, issues, and opportunities facing fish populations and fisheries. The 2021 WFC meeting, hosted remotely in Adelaide, Australia, marked the 30th year since the first meeting was held in Athens, Greece, and provided an opportunity to reflect on progress made in the past 30 years and provide guidance for the future. We assembled a diverse team of individuals involved with the Adelaide WFC and reflected on the major challenges that faced fish and fisheries over the past 30 years, discussed progress toward overcoming those challenges, and then used themes that emerged during the Congress to identify issues and opportunities to improve sustainability in the world's fisheries for the next 30 years. Key future needs and opportunities identified include: rethinking fisheries management systems and modelling approaches, modernizing and integrating assessment and information systems, being responsive and flexible in addressing persistent and emerging threats to fish and fisheries, mainstreaming the human dimension of fisheries, rethinking governance, policy and compliance, and achieving equity and inclusion in fisheries. We also identified a number of cross-cutting themes including better understanding the role of fish as nutrition in a hungry world, adapting to climate change, embracing transdisciplinarity, respecting Indigenous knowledge systems, thinking ahead with foresight science, and working together across scales. By reflecting on the past and thinking about the future, we aim to provide guidance for achieving our mutual goal of sustaining vibrant fish populations and sustainable fisheries that benefit all. We hope that this prospective thinking can serve as a guide to (i) assess progress towards achieving this lofty goal and (ii) refine our path with input from new and emerging voices and approaches in fisheries science, management, and stewardship.

5.
Artículo en Inglés | MEDLINE | ID: mdl-36055628

RESUMEN

Studies of changes in fatty acids in response to environmental temperature changes have been conducted in many species, particularly mammals. However, few studies have considered aquatic invertebrates, even though they are particularly vulnerable to changes in environmental temperature. In this review, we summarize the process by which animals synthesize common fatty acids and point out differences between the fatty acid profiles of vertebrates and those of aquatic invertebrates. Unlike vertebrates, some aquatic invertebrates can directly synthesize polyunsaturated fatty acids (PUFAs), which can be used to respond to temperature changes. Various studies have shown that aquatic invertebrates increase the degree of saturation in their fatty acids through an increase in saturated fatty acid production or a decrease in PUFAs as the temperature increases. In addition, we summarize recent studies that have examined the complex effects of temperature and combinational stressors to determine whether the degree of saturation in aquatic invertebrates is influenced by other factors. The combined effects of carbon dioxide partial pressure, food quality, starvation, salinity, and chemical exposures have been confirmed, and fatty acid profile changes in response to high temperature were greater than those from combinational stressors.


Asunto(s)
Dióxido de Carbono , Metabolismo de los Lípidos , Animales , Dióxido de Carbono/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos Insaturados , Invertebrados , Mamíferos , Penicilinas/metabolismo , Penicilinas/farmacología , Temperatura
6.
Mar Pollut Bull ; 180: 113752, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35617743

RESUMEN

This is the first study to analyze the whole-genome sequence of B. manjavacas Australian (Aus.) strain through combination of Oxford Nanopore long-read seq, resulting in a total length of 108.1 Mb and 75 contigs. Genome-wide detoxification related gene families in B. manjavacas Aus. strain were comparatively analyzed with those previously identified in other Brachionus spp., including B. manjavacas German (Ger.) strain. Most of the subfamilies in detoxification related families (CYPs, GSTs, and ABCs) were highly conserved and confirmed orthologous relationship with Brachionus spp., and with accumulation of genome data, clear differences between genomic repertoires were demonstrated the marine and the freshwater species. Furthermore, strain-specific genetic variations were present between the Aus. and Ger. strains of B. manjavacas. This whole-genome analysis provides in-depth review on the genomic structural differences for detoxification-related gene families and further provides useful information for comparative ecotoxicological studies and evolution of detoxification mechanisms in Brachionus spp.


Asunto(s)
Ecotoxicología , Rotíferos , Animales , Australia , Genoma , Metagenómica , Rotíferos/genética
7.
Aquat Toxicol ; 246: 106135, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35301178

RESUMEN

Iron (Fe), a trace metal in coastal waters has increased significantly due to anthropogenic activities, however, few studies have examined its toxicity to marine organism reproduction and associated mechanisms. We employed two marine rotifers, the temperate Brachionus plicatilis, and tropical B. rotundiformis to investigate the toxicity of iron (FeSO4•7H2O) and its deleterious effects on reproductive features in females (sexual fecundity, abnormal resting eggs, and swimming speed) and males (lifespan, swimming speed, and spermatozoa quality) under lethal and sub-lethal exposure. The 24 h median lethal concentration (LC50) of iron was determined as 0.9 and 1.7 µg/mL per ng of dry weight for B. plicatilis and B. rotundiformis, respectively. During sub-lethal iron (20-75 µg/mL) exposure, higher iron (≥ 20 µg/mL for B. plicatilis and ≥ 45 µg/mL for B. rotundiformis) induced rotifer sexual toxicity especially in normal resting egg development and production. These were supported by the data of male shorter lifespan, poor sperm vitality, and rotifer behavioral changes as the iron concentration increased. Iron effects on swimming behavior, slower males and faster females, should reduce male/female encounter rates associated with inactive fertilized egg (resting egg) production. Two rotifer species exhibited different iron-response patterns in genetic and enzymatic activities including iron homeostasis-maintaining related Fe-S protein, and oxidative/antioxidant related lipid peroxidation product (MDA), superoxidase dismutase/SOD, catalase/CAT, and cytochrome P450 under acute iron exposure. Antioxidant activities were vulnerable in B. plicatilis but kept activities in B. rotundiformis, which may attribute to their temperate and tropical habitat adaptations.


Asunto(s)
Rotíferos , Contaminantes Químicos del Agua , Animales , Antioxidantes/metabolismo , Ecosistema , Femenino , Hierro/toxicidad , Masculino , Reproducción , Contaminantes Químicos del Agua/toxicidad
8.
Mar Biotechnol (NY) ; 24(1): 226-242, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35262805

RESUMEN

The marine rotifer Brachionus manjavacas is widely used in ecological, ecotoxicological, and ecophysiological studies. The reference genome of B. manjavacas is a good starting point to uncover the potential molecular mechanisms of responses to various environmental stressors. In this study, we assembled the whole-genome sequence (114.1 Mb total, N50 = 6.36 Mb) of B. manjavacas, consisting of 61 contigs with 18,527 annotated genes. To elucidate the potential ligand-receptor signaling pathways in marine Brachionus rotifers in response to environmental signals, we identified 310 G protein-coupled receptor (GPCR) genes in the B. manjavacas genome after comparing them with three other species, including the minute rotifer Proales similis, Drosophila melanogaster, and humans (Homo sapiens). The 310 full-length GPCR genes were categorized into five distinct classes: A (262), B (26), C (7), F (2), and other (13). Most GPCR gene families showed sporadic evolutionary processes, but some classes were highly conserved between species as shown in the minute rotifer P. similis. Overall, these results provide potential clues for in silico analysis of GPCR-based signaling pathways in the marine rotifer B. manjavacas and will expand our knowledge of ligand-receptor signaling pathways in response to various environmental signals in rotifers.


Asunto(s)
Receptores Acoplados a Proteínas G , Rotíferos , Animales , Evolución Biológica , Genoma , Receptores Acoplados a Proteínas G/genética , Rotíferos/genética
9.
Artículo en Inglés | MEDLINE | ID: mdl-35245781

RESUMEN

Monogonont rotifers are common species in aquatic environments and make model species for ecotoxicology studies. Whole genomes of several species of the genus Brachionus have been assembled, but no information on the freshwater rotifer Brachionus rubens has been reported. In this study, the whole-genome sequence of B. rubens was successfully assembled using NextDenovo. The total length of the genome was 132.7 Mb (N50 = 2.51 Mb), including 122 contigs. The GC contents accounted for 29.96% of the genome. Aquatic organisms are always exposed to various external stresses, and a comprehensive genomic analysis is needed to better understand the adverse effects on organisms. This paper focuses on the ecotoxicological aspect and conducted genome analysis of representative gene families involved in detoxification mechanisms against environmental stressors. Specifically, we identified cytochrome P450 genes (CYPs) of phase I, glutathione S-transferase genes (GSTs) of phase II, and ATP-binding cassette transporter genes (ABCs) of phase III in the genome of B. rubens. Gene duplications were found in CYP, GST, and ABC genes, as is the case for other Brachionus rotifers. Our results suggest that these detoxification-related gene families have evolved in a species-specific and/or lineage-specific manner. This paper improves our understanding of how the freshwater Brachionus rotifers respond to environmental stressors in a molecular ecotoxicology context.


Asunto(s)
Rotíferos , Contaminantes Químicos del Agua , Animales , Sistema Enzimático del Citocromo P-450/genética , Ecotoxicología , Agua Dulce , Genoma , Rotíferos/genética , Contaminantes Químicos del Agua/toxicidad
10.
J Exp Zool B Mol Dev Evol ; 338(4): 215-224, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34855303

RESUMEN

In this study, we have identified the entire complement of typical homeobox (Hox) genes (Lab, Pb, Dfd, Scr, Antp, Ubx, Abd-A, and Abd-B) in harpacticoid and calanoid copepods and compared them with the cyclopoid copepod Paracyclopina nana. The harpacticoid copepods Tigriopus japonicus and Tigriopus kingsejongensis have seven Hox genes (Lab, Dfd, Scr, Antp, Ubx, Abd-A, and Abd-B) and the Pb and Ftz genes are also present in the cyclopoid copepod P. nana. In the Hox gene cluster of the calanoid copepod Eurytemora affinis, all the Hox genes were present linearly in the genome but the Antp gene was duplicated. Of the three representative copepods, the P. nana Hox gene cluster was the most compact due to its small genome size. The Hox gene expression profile patterns in the three representative copepods were stage-specific. The Lab, Dfd, Scr, Pb, Ftz, and Hox3 genes showed a high expression in early developmental stages but Antp, Ubx, Abd-A, and Abd-B genes were mostly expressed in later developmental stages, implying that these Hox genes may be closely associated with the development of segment identity during early development.


Asunto(s)
Copépodos , Genes Homeobox , Animales , Copépodos/genética , Medicamentos Herbarios Chinos , Plomo/química , Familia de Multigenes
11.
Artículo en Inglés | MEDLINE | ID: mdl-34655966

RESUMEN

G protein-coupled receptors (GPCRs) are considered to have originated from early evolution of eukaryotic species, therefore, the genome-wide identification of GPCR genes can provide insight into the adaptive strategy and evolutionary tendency in an animal taxon. Here, we identified a total 216 full-length GPCR genes in the marine water flea Diaphanosoma celebensis genome, which were classified into five distinct classes (A, B, C, F, and other). Phylogenetic comparison of GPCRs in D. celebensis to those in humans (Homo sapiens), fruitfly (Drosophila melanogaster), and freshwater water flea (Daphnia magna) reveals a high level of orthological relationship of amine, neuropeptide, and opsin receptor repertoire, while purinergic and chemokine receptors were highly differentiated in humans. Our findings suggest sporadic evolutionary processes within the GPCR gene families identified in D. celebensis. In this study, these results may provide a better understanding on the evolution of GPCRs, and expand our knowledge of the cladoceran GPCR gene repertories which in part, mediate cell physiological mechanisms in response to various environmental stimuli.


Asunto(s)
Cladóceros , Animales , Cladóceros/genética , Drosophila melanogaster , Genoma , Filogenia , Receptores Acoplados a Proteínas G/genética
12.
Mitochondrial DNA B Resour ; 6(7): 1921-1923, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34151016

RESUMEN

The complete mitochondrial genomes of Brachionus manjavacas German strain were 10,721 bp (mitochondrial DNA I) and 12,274 bp (mitochondrial DNA II) in size, while the complete mitochondrial genomes of B. manjavacas Australian strain were 10,889 bp (mitochondrial DNA I) and 12,443 bp (mitochondrial DNA II) in size. Of 12 protein-coding genes (PCGs), 99.6% of amino acid sequences were identical between the two strains. Of 12 PCGs of both B. manjavacas strains, three genes (ND1, ATP6, and ND5) had incomplete stop codon T. Furthermore, ATA was the start codon for ND4, ND5, and CO3 genes, whereas that for other PCGs was ATG in both strains. The base compositions of 12 PCGs in the B. manjavacas strains were similar, indicating that the mitochondrial genome of the two strains was structurally conserved over evolution. The gene structure and its orientation of 12 PGCs of B. manjavacas strains were identical, as shown in other marine Brachionus rotifers and the freshwater Brachionus rotifers, while the freshwater rotifer B. calyciflorus had an additional cytochrome b gene in the mitochondrial DNA I.

13.
Artículo en Inglés | MEDLINE | ID: mdl-34157608

RESUMEN

The minute marine rotifer Proales similis is a potential model species for ecotoxicological and ecophysiological studies. Therefore, the provision of whole-genome data for P. similis is an easy way to deepen understanding of the molecular mechanisms involved in response to various environmental stressors. In this research, we assembled the whole-genome sequence (32.7 Mb total, N50 = 2.42 Mb) of P. similis, consisting of 15 contigs with 10,785 annotated genes. To understand the ligand-receptor signaling pathway in rotifers in response to environmental cues, we identified 401 G protein-coupled receptor (GPCR) genes in the P. similis genome and compared them with those from other species. The 401 full-length GPCR genes were classified into five distinct classes: A (363), B (18), C (7), F (2), and other (11). Most GPCR gene families have undergone sporadic evolutionary processes. However, some classes were highly conserved between species. Overall, this result provides new information about GPCR-based signaling pathways and the evolution of GPCRs in the minute rotifer P. similis, and it expands our knowledge of ligand-receptor signaling pathways in response to various environmental cues.


Asunto(s)
Genoma de los Helmintos , Proteínas del Helminto/genética , Receptores Acoplados a Proteínas G/genética , Rotíferos/genética , Animales , Anotación de Secuencia Molecular , Filogenia
14.
Artículo en Inglés | MEDLINE | ID: mdl-33940320

RESUMEN

Brachionus spp. rotifers have been proposed as model organisms for ecotoxicological studies. We analyzed the whole-genome sequence of B. paranguensis through NextDenovo, resulting in a total length of 106.2 Mb and 71 contigs. The N50 and the GC content were 4.13 Mb and 28%, respectively. A total of 18,501 genes were predicted within the genome of B. paranguensis. Prominent detoxification-related gene families of phase I and II detoxifications have been investigated. In parallel with other Brachionus rotifers, high gene expansion was observed in CYP clan 3 and GST sigma class in B. paranguensis. Moreover, species-specific expansion of sulfotransferase (SULTs) and gain of UDP-glucuronosyltransferases (UGTs) through horizontal gene transfer has been specifically found within B. plicatilis complex. This whole-genome analysis of B. paranguensis provides a basis for molecular ecotoxicological studies and provides useful information for comparative studies of the evolution of detoxification mechanisms in Brachionus spp.


Asunto(s)
Ecotoxicología , Regulación de la Expresión Génica , Genoma de los Helmintos , Proteínas del Helminto/metabolismo , Metagenómica , Rotíferos/genética , Contaminantes Químicos del Agua/toxicidad , Animales , Proteínas del Helminto/genética , Filogenia , Especificidad de la Especie
15.
Chemosphere ; 277: 130317, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33780671

RESUMEN

Two euryhaline rotifers, the temperate species Brachionus plicatilis and tropical species Brachionus rotundiformis, were used to investigate the effects of iron (FeSO4·7H2O), an essential trace metal, on reproductive patterns and lifetables, including the metabolism of lipid and reactive oxygen species (ROS). B. plicatilis was more sensitive to iron with regard to sexual reproduction. While iron had no significant effect on the population growth at 0-48 µg/mL, it caused a decrease in the resting egg production. B. plicatilis exposed to 6 and 12 µg/mL of iron showed an increase in the intracellular ROS levels and a decrease in the neutral lipid content in sexual organs, accompanied by downregulation of antioxidant components CuZnSOD and two cytochromes (CYP clan 2&3). These patterns suggested that iron-induced oxidative stress was not neutralized by its antioxidant defense system, thus negatively affecting the fecundity of fertilized mictic females. However, B. rotundiformis showed a dose-dependent increase in population growth with extended lifespan and positive sexual reproduction in response to 0-24 µg/mL iron. Furthermore, compared to Fe-exposed B. plicatilis, B. rotundiformis showed better antioxidant mechanism, whereas genes involved in lipid synthesis (citrate lyase, mitochondrial CYP) and reproduction (vasa, sirtuin-2) were significantly upregulated compared to the control, implying that B. rotundiformis was likely to have higher resilience in response to iron-induced oxidative stress. These findings suggest that iron is likely to cause interspecific interactions in the B. plicatilis species complex, whereas the tropical species B. rotundiformis may have evolved an effective defense mechanism against iron-induced stress.


Asunto(s)
Hierro , Rotíferos , Animales , Femenino , Lípidos , Especies Reactivas de Oxígeno , Reproducción
16.
Mar Pollut Bull ; 166: 112190, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33711609

RESUMEN

In this study, we sequenced and assembled the genome of a European estuarine calanoid copepod using Oxford Nanopore PromethION and Illumina HiSeq 2500 platforms. The length of the assembled genome was 776.1 Mb with N50 = 474.9 kb (BUSCO 85.9%), and the genome consisted of 2473 contigs. A total of 18,014 genes were annotated and orthologous gene clusters were analyzed in comparison to other copepods. In addition, genome-wide identification of cytochrome P450s, glutathione S-transferases, and ATP-binding cassette transporters in E. affinis was performed to determine gene repertoire of these detoxification-related gene families. Results revealed the presence of species-specific gene inventories, indicating that these gene families have evolved through species-specific gene loss/expansion processes, possibly due to adaptation to different environmental stressors. Our study provides a new inventory of the European estuarine calanoid copepod E. affinis genome with emphasis on phase I, II, and III detoxification systems.


Asunto(s)
Copépodos , Contaminantes Químicos del Agua , Animales , Copépodos/genética , Sistema Enzimático del Citocromo P-450 , Ecotoxicología , Humanos , Especificidad de la Especie , Contaminantes Químicos del Agua/toxicidad
17.
Artículo en Inglés | MEDLINE | ID: mdl-33714839

RESUMEN

Brachionus spp. rotifers, which are widely distributed in aquatic environments, have been proposed as model organisms for ecotoxicological studies. Although the genomes of several rotifers belonging to the genus Brachionus have been assembled, the genome for the freshwater rotifer Brachionus angularis remains unknown. In this study, we analyzed the whole-genome sequence of B. angularis, which revealed a total length of 56.5 Mb and 21 contigs. The N50 and the GC content were 5.42 Mb and 23.66%, respectively. A total of 13,952 genes were predicted. Of them, we identified the main detoxification-related gene families, including those for cytochrome P450, glutathione S-transferase (GST), and the ATP-binding cassette transporter. In comparison with other Brachionus rotifers, massive species-specific expansion in GST sigma genes was found in B. angularis. This whole-genome analysis of B. angularis provides a basis for molecular ecotoxicological studies and provides useful biological tools for comparative studies of the evolution of detoxification mechanisms in Brachionus spp.


Asunto(s)
Genoma de los Helmintos , Proteínas del Helminto/genética , Rotíferos/genética , Animales , Sistema Enzimático del Citocromo P-450/genética , Ecotoxicología , Agua Dulce , Glutatión Transferasa/genética
18.
Biosci Biotechnol Biochem ; 85(3): 703-713, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33624778

RESUMEN

In larviculture facilities, rotifers are generally used as an initial food source, while a proper size of live feeds to connect rotifer and Artemia associated with fish larval growth is needed. The improper management of feed size and density induces mass mortality and abnormal development of fish larvae. To improve the survival and growth of target larvae, this study applied carbon and argon heavy-ion-beam irradiation in mutation breeding to select rotifer mutants with larger lorica sizes. The optimal irradiation conditions of heavy-ion beam were determined with lethality, reproductivity, mutant frequency, and morphometric characteristics. Among 56 large mutants, TYC78, TYC176, and TYA41 also showed active population growth. In conclusion, (1) heavy-ion-beam irradiation was defined as an efficient tool for mutagenesis of rotifers and (2) the aforementioned 3 lines that have larger lorica length and active population growth may be used as a countermeasure of live feed size gap during fish larviculcure.


Asunto(s)
Iones Pesados , Rotíferos/efectos de la radiación , Alimentación Animal , Animales , Acuicultura , Larva/crecimiento & desarrollo , Larva/efectos de la radiación , Mutación , Radiación Ionizante , Rotíferos/genética , Rotíferos/crecimiento & desarrollo , Rotíferos/fisiología
19.
Artículo en Inglés | MEDLINE | ID: mdl-33454556

RESUMEN

To assemble the genome of the marine water flea Diaphanosoma celebensis, a sentinel model for marine environmental monitoring, we constructed a high-quality genome using PromethION and HiSeq 2500 platforms. The total length of the assembled genome was 100.08 Mb, with N50 = 2.56 Mb (benchmarking universal single-copy orthologs, 96.9%) and consisted of 179 scaffolds. A total of 15,427 genes were annotated, and orthologous gene clusters in D. celebensis were analyzed and compared with those of the cladocerans Daphnia magna and Daphnia pulex. In addition, phase I, II, and III detoxification gene families of cytochrome P450s, glutathione S-transferases, and ATP-binding cassette were fully identified and revealed lineage-specific gene loss and/or expansion, suggesting that the evolution of detoxification gene families likely modulates fitness and susceptibility in response to environmental stressors. The study improves our understanding of the detoxification-related gene system and should contribute to future studies of molecular ecotoxicology in cladoceran species and their responses to emerging pollutants.


Asunto(s)
Proteínas de Artrópodos/genética , Cladóceros/genética , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Proteínas de Artrópodos/metabolismo , Cladóceros/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Ecotoxicología , Genoma , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Inactivación Metabólica , Familia de Multigenes
20.
Mitochondrial DNA B Resour ; 5(1): 502-503, 2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-33366621

RESUMEN

The two complete mitochondrial genomes were sequenced from the euryhaline monogonont rotifer Brachionus paranguensis. The mitochondrial genome sequences were 11,603 bp and 12,901 bp in size, and the gene order of 12 protein-coding genes (PCGs) were identical to those of the marine rotifer Brachionus plicatilis, but the positions of some tRNAs (e.g. tRNA-Ile, tRNA-Leu[TTA], tRNA-Phe, and tRNA-Leu[CTC]) of mitochondrial DNA I were different between B. paranguensis and B. plicatilis mitochondrial genomes. Of 12 PCGs, four genes (ND1, ATPase 6, ND5, and ND3) had incomplete stop codons. Furthermore, the start codon of ND4, ND5, and CO3 genes was ATT, while the start codon of other PCGs was ATG. The base composition of 12 PCGs in B. paranguensis mitochondrial genomes was 26.6% for A, 43.0% for T, 17.65% for C, and 12.75% for G, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA