Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Syst Biol ; 50(6): 926-44, 2001.
Article En | MEDLINE | ID: mdl-12116641

The Zingiberales are a tropical group of monocotyledons that includes bananas, gingers, and their relatives. The phylogenetic relationships among the eight families currently recognized are investigated here by using parsimony and maximum likelihood analyses of four character sets: morphological features (1), and sequence data of the (2) chloroplast rbcL gene, (3) chloroplast atpB gene, and (4) nuclear 18S rDNA gene. Outgroups for the analyses include the closely related Commelinaceae + Philydraceae + Haemodoraceae + Pontederiaceae + Hanguanaceae as well as seven more distantly related monocots and paleoherbs. Only slightly different estimates of evolutionary relationships result from the analysis of each character set. The morphological data yield a single fully resolved most-parsimonious tree. None of the molecular datasets alone completely resolves interfamilial relationships. The analyses of the combined molecular dataset provide more resolution than do those of individual genes, and the addition of the morphological data provides a well-supported estimate of phylogenetic relationships: (Musaceae ((Strelitziaceae, Lowiaceae) (Heliconiaceae ((Zingiberaceae, Costaceae) (Cannaceae, Marantaceae))))). Evidence from branch lengths in the parsimony analyses and from the fossil record suggests that the Zingiberales originated in the Early Cretaceous and underwent a rapid radiation in the mid-Cretaceous, by which time most extant family lineages had diverged.


Evolution, Molecular , Zingiberales/classification , Zingiberales/genetics , DNA, Plant/genetics , Databases, Factual , Databases, Genetic , Fossils , Genes, Plant , Models, Genetic , Phylogeny , RNA, Ribosomal, 18S/genetics , Ribulose-Bisphosphate Carboxylase/genetics , Zingiberales/anatomy & histology
2.
Proc Natl Acad Sci U S A ; 91(7): 2810-4, 1994 Mar 29.
Article En | MEDLINE | ID: mdl-11607469

The evolution of thorn-like structures in plants on oceanic islands that lack mammalian and reptilian herbivores is puzzling, as is their tendency toward juvenile-adult leaf dimorphism. We propose that these traits arose in Cyanea (Campanulaceae) on Hawaii as mechanical and visual defenses against herbivory by flightless geese and goose-like ducks that were extirpated by Polynesians within the last 1600 years. A chloroplast DNA phylogeny indicates that thorn-like prickles evolved at least four times and leaf dimorphism at least three times during the last 3.7 million years. The incidence of both traits increases from Oahu eastward toward younger islands, paralleling the distribution of avian species apparently adapted for browsing. The effectiveness of visual defenses against avian browsers (once dominant on many oceanic islands, based on the vagility of their ancestors) may provide a general explanation for insular heterophylly: the other islands on which this previously unexplained phenomenon is marked (New Zealand, New Caledonia, Madagascar, Mascarene Islands) are exactly those on which one or more large flightless avian browsers evolved.

...