Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioact Mater ; 36: 168-184, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38463551

RESUMEN

Vascularization is crucial for providing nutrients and oxygen to cells while removing waste. Despite advances in 3D-bioprinting, the fabrication of structures with void spaces and channels remains challenging. This study presents a novel approach to create robust yet flexible and permeable small (600-1300 µm) artificial vessels in a single processing step using 3D coaxial extrusion printing of a biomaterial ink, based on tyramine-modified polyethylene glycol (PEG-Tyr). We combined the gelatin biocompatibility/activity, robustness of PEG-Tyr and alginate with the shear-thinning properties of methylcellulose (MC) in a new biomaterial ink for the fabrication of bioinspired vessels. Chemical characterization using NMR and FTIR spectroscopy confirmed the successful modification of PEG with Tyr and rheological characterization indicated that the addition of PEG-Tyr decreased the viscosity of the ink. Enzyme-mediated crosslinking of PEG-Tyr allowed the formation of covalent crosslinks within the hydrogel chains, ensuring its stability. PEG-Tyr units improved the mechanical properties of the material, resulting in stretchable and elastic constructs without compromising cell viability and adhesion. The printed vessel structures displayed uniform wall thickness, shape retention, improved elasticity, permeability, and colonization by endothelial-derived - EA.hy926 cells. The chorioallantoic membrane (CAM) and in vivo assays demonstrated the hydrogel's ability to support neoangiogenesis. The hydrogel material with PEG-Tyr modification holds promise for vascular tissue engineering applications, providing a flexible, biocompatible, and functional platform for the fabrication of vascular structures.

2.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36768212

RESUMEN

Aquaporin-5 (AQP5), belonging to the aquaporins (AQPs) family of transmembrane water channels, facilitates osmotically driven water flux across biological membranes and the movement of hydrogen peroxide and CO2. Various mechanisms have been shown to dynamically regulate AQP5 expression, trafficking, and function. Besides fulfilling its primary water permeability function, AQP5 has been shown to regulate downstream effectors playing roles in various cellular processes. This review provides a comprehensive overview of the current knowledge of the upstream and downstream effectors of AQP5 to gain an in-depth understanding of the physiological and pathophysiological processes involving AQP5.


Asunto(s)
Acuaporina 5 , Acuaporinas , Acuaporina 5/genética , Acuaporina 5/metabolismo , Acuaporinas/metabolismo , Membrana Celular/metabolismo , Permeabilidad , Agua/metabolismo
3.
Molecules ; 28(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36677733

RESUMEN

Apple pomace (AP) from the food industry is a mixture of different fractions containing bioactive polyphenolic compounds. This study provides a systematic approach toward the recovery and evaluation of the physiochemical and biological properties of polyphenolic compounds from AP. We studied subcritical water extraction (SCW) and solvent extraction with ethanol from four different AP fractions of pulp, peel, seed, core, and stem (A), peel (B), seed and core (C), and pulp and peel (D). The subcritical water method at the optimum condition resulted in total polyphenolic compounds (TPC) of 39.08 ± 1.10 mg GAE per g of AP on a dry basis compared to the ethanol extraction with TPC content of 10.78 ± 0.94 mg GAE/g db. Phloridzin, chlorogenic acid, and quercetin were the main identified polyphenolics in the AP fractions using HPLC. DPPH radical scavenging activity of fraction B and subcritical water (SW) extracts showed comparable activity to ascorbic acid while all ethanolic extracts were cytocompatible toward human fibroblast (3T3-L1) and salivary gland acinar cells (NS-SV-AC). Our results indicated that AP is a rich source of polyphenolics with the potential for biomedical applications.


Asunto(s)
Antioxidantes , Malus , Humanos , Antioxidantes/química , Malus/química , Residuos Industriales/análisis , Polifenoles/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Etanol/química , Agua , Industria de Alimentos
4.
J Biomed Sci ; 29(1): 35, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35668440

RESUMEN

Salivary gland (SG) dysfunction impairs the life quality of many patients, such as patients with radiation therapy for head and neck cancer and patients with Sjögren's syndrome. Multiple SG engineering strategies have been considered for SG regeneration, repair, or whole organ replacement. An in-depth understanding of the development and differentiation of epithelial stem and progenitor cells niche during SG branching morphogenesis and signaling pathways involved in cell-cell communication constitute a prerequisite to the development of suitable bioengineering solutions. This review summarizes the essential bioengineering features to be considered to fabricate an engineered functional SG model using various cell types, biomaterials, active agents, and matrix fabrication methods. Furthermore, recent innovative and promising approaches to engineering SG models are described. Finally, this review discusses the different challenges and future perspectives in SG bioengineering.


Asunto(s)
Glándulas Salivales , Ingeniería de Tejidos , Bioingeniería , Humanos , Regeneración , Células Madre
5.
Carbohydr Polym ; 245: 116465, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32718603

RESUMEN

In the article, a bilayer nanocomposite scaffold made of oxidized alginate (OAL), gelatin (G), and silk fibroin (SF) has been prepared via combining electrospinning, in situ gas foaming, in situ crosslinking and freeze drying methods. The physicochemical and mechanical properties, as well as thermal stability of the proposed composite, have been investigated by SEM, FTIR, XRD, tensile, and TGA analysis. The data indicate that structure and degree of crosslinking play a vital role in adjusting the physical and mechanical properties of composite scaffolds. Further, the authors find a favorable adipose-derived mesenchymal stem cell's (AMSC) attachment and distribution within this novel hydrogel-electrospun composite. Such a nanocomposite structure with its promising properties and cell-material interaction may be considered as a new scaffold for different tissue engineering applications.


Asunto(s)
Alginatos/química , Fibroínas/química , Gelatina/química , Hidrogeles/química , Nanocompuestos/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Proliferación Celular , Supervivencia Celular , Reactivos de Enlaces Cruzados/química , Células Madre Mesenquimatosas/fisiología , Nanofibras/química , Oxidación-Reducción , Porosidad , Porcinos , Temperatura
6.
J Cell Biochem ; 121(4): 2981-2993, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31724234

RESUMEN

Mimicking the structure of extracellular matrix (ECM) of myocardium is necessary for fabrication of functional cardiac tissue. The superparamagnetic iron oxide nanoparticles (SPIONs, Fe3 O4 ), as new generation of magnetic nanoparticles (NPs), are highly intended in biomedical studies. Here, SPION NPs (1 wt%) were synthesized and incorporated into silk-fibroin (SF) electrospun nanofibers to enhance mechanical properties and topography of the scaffolds. Then, the mouse embryonic cardiac cells (ECCs) were seeded on the scaffolds for in vitro studies. The SPION NPs were studied by scanning electron microscope (SEM), X-ray diffraction (XRD), and transmission electron microscope (TEM). SF nanofibers were characterized after incorporation of SPIONs by SEM, TEM, water contact angle measurement, and tensile test. Furthermore, cytocompatibility of scaffolds was confirmed by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. SEM images showed that ECCs attached to the scaffolds with elongated morphologies. Also, the real-time PCR and immunostaining studies approved upregulation of cardiac functional genes in ECCs seeded on the SF/SPION-casein scaffolds including GATA-4, cardiac troponin T, Nkx 2.5, and alpha-myosin heavy chain, compared with the ones in SF. In conclusion, incorporation of core-shells in SF supports cardiac differentiation, while has no negative impact on ECCs' proliferation and self-renewal capacity.


Asunto(s)
Fibroínas/química , Nanopartículas Magnéticas de Óxido de Hierro , Miocardio/metabolismo , Nanofibras/química , Ingeniería de Tejidos/métodos , Andamios del Tejido , Animales , Diferenciación Celular , Núcleo Celular/metabolismo , Corazón/fisiología , Ratones , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Nanocompuestos , Estrés Mecánico , Propiedades de Superficie , Resistencia a la Tracción , Difracción de Rayos X
7.
Artif Cells Nanomed Biotechnol ; 43(2): 124-32, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24195583

RESUMEN

Hydrogels made of natural polymers [chitosan (CS) and gelatin (G)] have been prepared having mechanical properties similar to those of muscle tissues. In this study, the effect of polymer concentration and scaffold stiffness on the behavior of seeded muscle-derived cells (MDCs) on the CS-G hydrogel sheets has been evaluated. Both variables were found to be important in cell viability. Viability was assessed by observation of the cell morphology after 1 day as well as a 14-day MTT assay. The CS-G hydrogels were characterized using Fourier transform infrared (FTIR) analysis, which revealed evidences of strong intermolecular interactions between CS and G. Hydrogel samples with intermediate concentration of CS had suitable handling characteristics for surgical purposes as well as similar elasticity to muscle tissues. The sample with intermediate stiffness (22 ± 1kPa) exhibited the greatest attachment, expansion, and proliferation rate. Such CS-G hydrogels with intermediate stiffness may be considered as new candidates for muscle tissue engineering in the reconstructive field of urology.


Asunto(s)
Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Quitosano/química , Gelatina/química , Músculos/citología , Ingeniería de Tejidos , Andamios del Tejido/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Fenómenos Mecánicos , Células Musculares/citología , Células Musculares/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA