Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
bioRxiv ; 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38496633

Structural brain changes underly cognitive changes in older age and contribute to inter-individual variability in cognition. Here, we assessed how changes in cortical thickness, surface area, and subcortical volume, are related to cognitive change in cognitively unimpaired older adults using structural magnetic resonance imaging (MRI) data-driven clustering. Specifically, we tested (1) which brain structural changes over time predict cognitive change in older age (2) whether these are associated with core cerebrospinal fluid (CSF) Alzheimer's disease (AD) biomarkers phosphorylated tau (p-tau) and amyloid-ß (Aß42), and (3) the degree of overlap between clusters derived from different structural features. In total 1899 cognitively healthy older adults (50 - 93 years) were followed up to 16 years with neuropsychological and structural MRI assessments, a subsample of which (n = 612) had CSF p-tau and Aß42 measurements. We applied Monte-Carlo Reference-based Consensus clustering to identify subgroups of older adults based on structural brain change patterns over time. Four clusters for each brain feature were identified, representing the degree of longitudinal brain decline. Each brain feature provided a unique contribution to brain aging as clusters were largely independent across modalities. Cognitive change and baseline cognition were best predicted by cortical area change, whereas higher levels of p-tau and Aß42 were associated with changes in subcortical volume. These results provide insights into the link between changes in brain morphology and cognition, which may translate to a better understanding of different aging trajectories.

2.
Brain ; 147(1): 215-223, 2024 01 04.
Article En | MEDLINE | ID: mdl-37658825

Alterations in brain energy metabolism have long been proposed as one of several neurobiological processes contributing to delirium. This is supported by previous findings of altered CSF lactate and neuron-specific enolase concentrations and decreased glucose uptake on brain-PET in patients with delirium. Despite this, there are limited data on metabolic alterations found in CSF samples, and targeted metabolic profiling of CSF metabolites involved in energy metabolism has not been performed. The aim of the study was to investigate whether metabolites related to energy metabolism in the serum and CSF of patients with hip fracture are associated with delirium. The study cohort included 406 patients with a mean age of 81 years (standard deviation 10 years), acutely admitted to hospital for surgical repair of a hip fracture. Delirium was assessed daily until the fifth postoperative day. CSF was collected from all 406 participants at the onset of spinal anaesthesia, and serum samples were drawn concurrently from 213 participants. Glucose and lactate in CSF were measured using amperometry, whereas plasma glucose was measured in the clinical laboratory using enzymatic photometry. Serum and CSF concentrations of the branched-chain amino acids, 3-hydroxyisobutyric acid, acetoacetate and ß-hydroxybutyrate were measured using gas chromatography-tandem mass spectrometry (GC-MS/MS). In total, 224 (55%) patients developed delirium pre- or postoperatively. Ketone body concentrations (acetoacetate, ß-hydroxybutyrate) and branched-chain amino acids were significantly elevated in the CSF but not in serum among patients with delirium, despite no group differences in glucose concentrations. The level of 3-hydroxyisobutyric acid was significantly elevated in both CSF and serum. An elevation of CSF lactate during delirium was explained by age and comorbidity. Our data suggest that altered glucose utilization and a shift to ketone body metabolism occurs in the brain during delirium.


Delirium , Hip Fractures , Humans , Aged, 80 and over , Glucose/metabolism , Acetoacetates , 3-Hydroxybutyric Acid , Tandem Mass Spectrometry , Hip Fractures/complications , Hip Fractures/surgery , Brain/diagnostic imaging , Brain/metabolism , Lactates , Amino Acids, Branched-Chain
3.
Neurobiol Aging ; 131: 11-23, 2023 Nov.
Article En | MEDLINE | ID: mdl-37549446

Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) have been linked to age-related neurodegeneration and Alzheimer's disease (AD), but their role in normal aging is poorly understood. We used linear mixed models to determine if baseline or rate of yearly change in cerebrospinal fluid (CSF) levels of MMP-2; MMP-3; MMP-10; TIMP-123 (composite of TIMP-1, TIMP-2, and TIMP-3); or TIMP-4 predicted changes in bilateral entorhinal cortex thickness, hippocampal volume, or lateral ventricle volume in cognitively unimpaired individuals. We also assessed effects on the CSF AD biomarkers amyloid-ß42 and phosphorylated tau181. Low baseline levels of MMP-3 predicted larger ventricle volumes and more entorhinal cortex thinning. Increased CSF MMP-2 levels over time predicted more entorhinal thinning, hippocampal atrophy, and ventricular expansion, while increased TIMP-123 over time predicted ventricular expansion. No MMP/TIMPs predicted changes in CSF AD biomarkers. Notably, we show for the first time that longitudinal increases in MMP-2 and TIMP-123 levels may predict age-associated brain atrophy. In conclusion, MMPs and TIMPs may play a role in brain atrophy in cognitively unimpaired aging.


Alzheimer Disease , Matrix Metalloproteinase 2 , Humans , Matrix Metalloproteinase 2/cerebrospinal fluid , Matrix Metalloproteinase 3 , Alzheimer Disease/pathology , Atrophy/pathology , Brain/diagnostic imaging , Brain/pathology , Biomarkers/cerebrospinal fluid
4.
Brain Behav Immun ; 113: 56-65, 2023 10.
Article En | MEDLINE | ID: mdl-37400002

Concentrations of pro-inflammatory cytokines -interleukin-6 (IL-6) and interleukin-8 (IL-8) - are increased with age and in Alzheimer's disease (AD). It is not clear whether concentrations of IL-6 and IL-8 in the central nervous system predict later brain and cognitive changes over time nor whether this relationship is mediated by core AD biomarkers. Here, 219 cognitively healthy older adults (62-91 years), with baseline cerebrospinal fluid (CSF) measures of IL-6 and IL-8 were followed over time - up to 9 years - with assessments that included cognitive function, structural magnetic resonance imaging, and CSF measurements of phosphorylated tau (p-tau) and amyloid-ß (Aß-42) concentrations (for a subsample). Higher baseline CSF IL-8 was associated with better memory performance over time in the context of lower levels of CSF p-tau and p-tau/Aß-42 ratio. Higher CSF IL-6 was related to less CSF p-tau changes over time. The results are in line with the hypothesis suggesting that an up-regulation of IL-6 and IL-8 in the brain may play a neuroprotective role in cognitively healthy older adults with lower load of AD pathology.


Alzheimer Disease , Cognitive Dysfunction , Humans , Aged , Alzheimer Disease/pathology , Interleukin-6 , Interleukin-8 , tau Proteins/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Brain/pathology , Biomarkers/cerebrospinal fluid , Atrophy/pathology , Memory Disorders/pathology , Cognitive Dysfunction/pathology , Peptide Fragments/cerebrospinal fluid
5.
Alzheimers Dement ; 19(12): 5573-5582, 2023 Dec.
Article En | MEDLINE | ID: mdl-37264981

INTRODUCTION: The kynurenine pathway's (KP) malfunction is closely related to Alzheimer's disease (AD), for antagonistic kynurenic acid (KA) and agonistic quinolinic acid act on the N-methyl-D-aspartate receptor, a possible therapeutic target in treating AD. METHODS: In our longitudinal case-control study, KP metabolites in the cerebrospinal fluid were analyzed in 311 patients with AD and 105 cognitively unimpaired controls. RESULTS: Patients with AD exhibited higher concentrations of KA (ß = 0.18, P < 0.01) and picolinic acid (ß = 0.20, P < 0.01) than the controls. KA was positively associated with tau pathology (ß = 0.29, P < 0.01), and a higher concentration of KA was associated with the slower progression of dementia. DISCUSSION: The higher concentrations of neuroprotective metabolites KA and picolinic acid suggest that the activation of the KP's neuroprotective branch is an adaptive response in AD and may be a promising target for intervention and treatment. Highlights Patients with Alzheimer's disease (AD) exhibited higher concentrations of kynurenic acid and picolinic acid than controls. Higher concentrations of kynurenic acid were associated with slower progression of AD. Potential neurotoxic kynurenines were not increased among patients with AD. Activation of the kynurenine pathway's neuroprotective branch may be an adaptive response in AD.


Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Kynurenine/cerebrospinal fluid , Kynurenic Acid/metabolism , Case-Control Studies , Disease Progression
7.
J Clin Invest ; 133(2)2023 01 17.
Article En | MEDLINE | ID: mdl-36409557

BACKGROUNDThe kynurenine pathway (KP) has been identified as a potential mediator linking acute illness to cognitive dysfunction by generating neuroactive metabolites in response to inflammation. Delirium (acute confusion) is a common complication of acute illness and is associated with increased risk of dementia and mortality. However, the molecular mechanisms underlying delirium, particularly in relation to the KP, remain elusive.METHODSWe undertook a multicenter observational study with 586 hospitalized patients (248 with delirium) and investigated associations between delirium and KP metabolites measured in cerebrospinal fluid (CSF) and serum by targeted metabolomics. We also explored associations between KP metabolites and markers of neuronal damage and 1-year mortality.RESULTSIn delirium, we found concentrations of the neurotoxic metabolite quinolinic acid in CSF (CSF-QA) (OR 2.26 [1.78, 2.87], P < 0.001) to be increased and also found increases in several other KP metabolites in serum and CSF. In addition, CSF-QA was associated with the neuronal damage marker neurofilament light chain (NfL) (ß 0.43, P < 0.001) and was a strong predictor of 1-year mortality (HR 4.35 [2.93, 6.45] for CSF-QA ≥ 100 nmol/L, P < 0.001). The associations between CSF-QA and delirium, neuronal damage, and mortality remained highly significant following adjustment for confounders and multiple comparisons.CONCLUSIONOur data identified how systemic inflammation, neurotoxicity, and delirium are strongly linked via the KP and should inform future delirium prevention and treatment clinical trials that target enzymes of the KP.FUNDINGNorwegian Health Association and South-Eastern Norway Regional Health Authorities.


Delirium , Hip Fractures , Humans , Quinolinic Acid/cerebrospinal fluid , Acute Disease , Hip Fractures/cerebrospinal fluid , Hip Fractures/complications , Hip Fractures/psychology , Kynurenine/metabolism , Delirium/etiology , Delirium/cerebrospinal fluid , Inflammation/complications
8.
Neurobiol Aging ; 116: 80-91, 2022 08.
Article En | MEDLINE | ID: mdl-35584575

It is unclear whether cerebrospinal fluid (CSF) biomarkers of neurodegeneration predict brain atrophy in cognitively healthy older adults, whether these associations can be explained by phosphorylated tau181 (p-tau) and the 42 amino acid form of amyloid-ß (Aß42) biomarkers, and which neural substrates may drive these associations. We addressed these questions in 2 samples of cognitively healthy older adults who underwent longitudinal structural MRI up to 7 years and had baseline CSF levels of heart-type fatty-acid binding protein (FABP3)=, total-tau, neurogranin, and neurofilament light (NFL) (n = 189, scans = 721). The results showed that NFL, total-tau, and FABP3 predicted entorhinal thinning and hippocampal atrophy. Brain atrophy was not moderated by Aß42 and the associations between NFL and FABP3 with brain atrophy were independent of p-tau. The spatial pattern of cortical atrophy associated with the biomarkers overlapped with neurogenetic profiles associated with expression in the axonal (total-tau, NFL) and dendritic (neurogranin) components. CSF biomarkers of neurodegeneration are useful for predicting specific features of brain atrophy in older adults, independently of amyloid and tau pathology biomarkers.


Alzheimer Disease , Neurogranin , Aged , Alzheimer Disease/pathology , Amyloid beta-Peptides/cerebrospinal fluid , Atrophy/pathology , Biomarkers/cerebrospinal fluid , Brain/diagnostic imaging , Brain/pathology , Humans , Neurofilament Proteins/cerebrospinal fluid , Neurogranin/cerebrospinal fluid , tau Proteins/cerebrospinal fluid
9.
Transl Psychiatry ; 12(1): 151, 2022 04 09.
Article En | MEDLINE | ID: mdl-35397615

Noradrenergic and dopaminergic neurons are involved in cognitive functions, relate to behavioral and psychological symptoms in dementia and are affected in Alzheimer's disease (AD). Amyloid plaques (A), neurofibrillary tangles (T) and neurodegeneration (N) hallmarks the AD neuropathology. Today, the AT(N) pathophysiology can be assessed through biomarkers. Previous studies report cerebrospinal fluid (CSF) catecholamine concentrations in AD patients without biomarker refinement. We explored if CSF catecholamines relate to AD clinical presentation or neuropathology as reflected by CSF biomarkers. CSF catecholamines were analyzed in AD patients at the mild cognitive impairment (MCI; n = 54) or dementia stage (n = 240) and in cognitively unimpaired (n = 113). CSF biomarkers determined AT status and indicated synaptic damage (neurogranin). The AD patients (n = 294) had higher CSF noradrenaline and adrenaline concentrations, but lower dopamine concentrations compared to the cognitively unimpaired (n = 113). AD patients in the MCI and dementia stage of the disease had similar CSF catecholamine concentrations. In the CSF neurogranin positively associated with noradrenaline and adrenaline but not with dopamine. Adjusted regression analyses including AT status, CSF neurogranin, age, gender, and APOEε4 status verified the findings. In restricted analyses comparing A+T+ patients to A-T- cognitively unimpaired, the findings for CSF adrenaline remained significant (p < 0.001) but not for CSF noradrenaline (p = 0.07) and CSF dopamine (p = 0.33). There were no differences between A+T+ and A-T- cognitively unimpaired. Thus, we find alterations in CSF catecholamines in symptomatic AD and the CSF adrenergic transmitters to increase simultaneously with synaptic damage as indexed by CSF neurogranin.


Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/complications , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Catecholamines , Cognitive Dysfunction/complications , Dopamine , Epinephrine , Humans , Neurogranin/cerebrospinal fluid , Norepinephrine , Peptide Fragments/cerebrospinal fluid , tau Proteins/cerebrospinal fluid
10.
J Alzheimers Dis ; 81(2): 667-677, 2021.
Article En | MEDLINE | ID: mdl-33814433

BACKGROUND: Delirium is associated with an increased risk of incident dementia and accelerated progression of existing cognitive symptoms. Reciprocally, dementia increases the risk of delirium. Cerebrospinal fluid (CSF) concentration of the dendritic protein neurogranin has been shown to increase in early Alzheimer's disease (AD), likely reflecting synaptic dysfunction and/or degeneration. OBJECTIVE: To elucidate the involvement of synaptic dysfunction in delirium pathophysiology, we tested the association between CSF neurogranin concentration and delirium in hip fracture patients with different AD-biomarker profiles, while comparing them to cognitively unimpaired older adults (CUA) and AD patients. METHODS: The cohort included hip fracture patients with (n = 70) and without delirium (n = 58), CUA undergoing elective surgery (n = 127), and AD patients (n = 46). CSF was collected preoperatively and diagnostically in surgery and AD patients respectively. CSF neurogranin concentrations were analyzed in all samples with an in-house ELISA. Delirium was assessed pre-and postoperatively in hip fracture patients by trained investigators using the Confusion Assessment Method. Hip fracture patients were further stratified based on pre-fracture dementia status, delirium subtype, and AD fluid biomarkers. RESULTS: No association was found between delirium and CSF neurogranin concentration (main analysis: delirium versus no delirium, p = 0.68). Hip fracture patients had lower CSF neurogranin concentration than AD patients (p = 0.001) and CUA (p = 0.035) in age-adjusted sensitivity analyses. CONCLUSION: The findings suggest that delirium is not associated with increased CSF neurogranin concentration in hip fracture patients, possibly due to advanced neurodegenerative disease and age and/or because synaptic degeneration is not an important pathophysiological process in delirium.


Delirium/complications , Hip Fractures/cerebrospinal fluid , Hip Fractures/complications , Neurodegenerative Diseases/cerebrospinal fluid , Neurogranin/cerebrospinal fluid , Aged , Aged, 80 and over , Alzheimer Disease/psychology , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Cognitive Dysfunction/cerebrospinal fluid , Delirium/cerebrospinal fluid , Delirium/etiology , Female , Humans , Male , Neurodegenerative Diseases/complications , tau Proteins/cerebrospinal fluid
11.
Alzheimers Dement (Amst) ; 12(1): e12128, 2020.
Article En | MEDLINE | ID: mdl-33313376

INTRODUCTION: The progression rate of Alzheimer's disease (AD) varies and might be affected by the triggering receptor expressed on myeloid cells (TREM2) activity. We explored if cerebrospinal fluid (CSF) soluble TREM2 (sTREM2), a proxy of microglial activity, is associated with clinical progression rate. METHODS: Patients with clinical AD (N = 231) were followed for up to 3 years after diagnosis. Cognitively healthy controls (N = 42) were followed for 5 years. CSF sTREM2 was analyzed by enzyme-linked immunosorbent assay. Group-based trajectory modeling revealed distinct clinical progression groups. RESULTS: Higher CSF sTREM2 was associated with slow clinical progression. The slow- and medium-progressing groups had higher CSF sTREM2 than the cognitively healthy, who had a similar level to patients with rapid clinical progression. DISCUSSION: CSF sTREM2 levels were associated with clinical progression in AD, regardless of core biomarkers. This could be useful in assessing disease development in relation to patient care and clinical trial recruitment.

12.
J Alzheimers Dis ; 77(1): 183-190, 2020.
Article En | MEDLINE | ID: mdl-32804136

BACKGROUND: Delirium is associated with dementia and thus biomarkers reflecting neurodegeneration are of interest. Fatty acid-binding protein 3 (FABP3) is a cytoplasmic neuronal protein that has been isolated from the brain. It is released following brain injury and concentrations in cerebrospinal fluid (CSF) are also higher in neurodegenerative disorders such as Alzheimer's disease (AD). OBJECTIVE: To examine the relationship between CSF FABP3 concentration and delirium in hip fracture patients compared to a group of cognitively normal controls. METHODS: CFS FABP3 concentration was measured in 128 hip fracture patients with (n = 71) and without (n = 57) delirium, and in cognitively unimpaired adults ≥64 years (n = 124) undergoing elective surgery. RESULTS: CSF FABP3 (pg/ml) concentration (median (IQR)) was higher in hip-fracture patients compared to cognitively normal controls (5.7 (4.2-7.7) versus 4.5 (3.4-6.1), p < 0.001). There was a significant weak correlation between age and CSF FABP3 (ρ= 0.3, p < 0.001). After adjustment for age, the association between CSF FABP3 and hip-fracture was no longer statistically significant (ß= 0.05, p = 0.5). There were no significant differences in CSF FABP3 concentration between hip fracture patients with (5.4 (4.1-8.2)) and without (5.8 (4.2-7.2)) delirium. CSF FABP3 concentration correlated positively with CSF AD biomarkers p-tau (ρ= 0.7, p < 0.01) and t-tau (ρ= 0.7, p < 0.01). CONCLUSION: CSF FABP3 concentrations were higher in hip fracture patients compared with cognitively normal older adults, indicating ongoing age-related neurodegeneration in these patients. There were no differences of CSF FABP3 concentrations across delirium groups, suggesting that neuronal damage or degeneration reflected by FABP3 may not be directly linked to delirium pathophysiology.


Delirium/cerebrospinal fluid , Delirium/psychology , Fatty Acid Binding Protein 3/cerebrospinal fluid , Hip Fractures/cerebrospinal fluid , Hip Fractures/psychology , Aged , Aged, 80 and over , Biomarkers/cerebrospinal fluid , Cohort Studies , Delirium/diagnosis , Female , Hip Fractures/diagnosis , Humans , Male
13.
Cereb Cortex ; 30(4): 2295-2306, 2020 04 14.
Article En | MEDLINE | ID: mdl-31812991

Neuroinflammation may be a key factor in brain atrophy in aging and age-related neurodegenerative disease. The objective of this study was to test the association between microglial expression of soluble Triggering Receptor Expressed on Myeloid Cells 2 (sTREM2), as a measure of neuroinflammation, and brain atrophy in cognitively unimpaired older adults. Brain magnetic resonance imagings (MRIs) and cerebrospinal fluid (CSF) sTREM2, total tau (t-tau), phosphorylated181 tau (p-tau), and Aß42 were analyzed in 115 cognitively unimpaired older adults, classified according to the A/T/(N)-framework. MRIs were repeated after 2 (n = 95) and 4 (n = 62) years. High baseline sTREM2 was associated with accelerated cortical thinning in the temporal cortex of the left hemisphere, as well as bilateral hippocampal atrophy, independently of age, Aß42, and tau. sTREM2-related atrophy only marginally increased with biomarker positivity across the AD continuum (A-T- #x2292; A+T- #x2292; A+T+) but was significantly stronger in participants with a high level of p-tau (T+). sTREM2-related cortical thinning correlated significantly with areas of high microglial-specific gene expression in the Allen Human Brain Atlas. In conclusion, increased CSF sTREM2 was associated with accelerated cortical and hippocampal atrophy in cognitively unimpaired older participants, particularly in individuals with tau pathology. This suggests a link between neuroinflammation, neurodegeneration, and amyloid-independent tauopathy.


Membrane Glycoproteins/cerebrospinal fluid , Neurodegenerative Diseases/cerebrospinal fluid , Neurodegenerative Diseases/diagnostic imaging , Temporal Lobe/diagnostic imaging , tau Proteins/cerebrospinal fluid , Aged , Atrophy , Biomarkers/cerebrospinal fluid , Female , Follow-Up Studies , Humans , Longitudinal Studies , Male , Neurodegenerative Diseases/psychology , Predictive Value of Tests , Receptors, Immunologic
14.
Dement Geriatr Cogn Disord ; 46(5-6): 346-357, 2018.
Article En | MEDLINE | ID: mdl-30522125

BACKGROUND: Delirium is associated with new-onset dementia, suggesting that delirium pathophysiology involves neuronal injury. Neurofilament light (NFL) is a sensitive biomarker for neuroaxonal injury. METHODS: NFL was measured in cerebrospinal fluid (CSF) (n = 130), preoperative serum (n = 192), and postoperative serum (n = 280) in hip fracture patients, and in CSF (n = 123) and preoperative serum (n = 134) in cognitively normal older adults undergoing elective surgery. Delirium was diagnosed with the Confusion Assessment Method. RESULTS: Median serum NFL (pg/mL) was elevated in delirium in hip fracture patients (94 vs. 54 pre- and 135 vs. 92 postoperatively, both p < 0.001). Median CSF NFL tended to be higher in hip fracture patients with delirium (1,804 vs. 1,636, p = 0.074). Serum and CSF NFL were positively correlated (ρ = 0.56, p < 0.001). CONCLUSION: Our findings support an association between neuroaxonal injury and delirium. The correlation between serum and CSF NFL supports the use of NFL as a blood biomarker in future delirium studies.


Delirium , Dementia/diagnosis , Fracture Fixation/adverse effects , Hip Fractures , Neurofilament Proteins/cerebrospinal fluid , Postoperative Complications , Aged , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Correlation of Data , Delirium/blood , Delirium/cerebrospinal fluid , Delirium/diagnosis , Delirium/etiology , Female , Fracture Fixation/methods , Geriatric Assessment/methods , Hip Fractures/psychology , Hip Fractures/surgery , Humans , Male , Middle Aged , Neurofilament Proteins/blood , Postoperative Complications/blood , Postoperative Complications/cerebrospinal fluid , Postoperative Complications/diagnosis
...