Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Soft Matter ; 14(48): 9838-9846, 2018 Dec 12.
Article En | MEDLINE | ID: mdl-30475363

With the increase in popularity of 3D printing, an important question arises as to the equivalence between devices manufactured by standard methods vs. those presenting with identical bulk specifications, but manufactured via fused deposition modeling (FDM) printing. Using thermal imaging in conjunction with electron and atomic force microscopy, we demonstrate that large thermal gradients, whose distribution is difficult to predict, are associated with FDM printing and result in incomplete fusion and sharkskin of the printing filament. Even though these features are micro or submicron scale, and hence may not interfere with the intended function of the device, they can have a profound influence if the device comes in contact with living tissue. Dental pulp stem cells were cultured on substrates of identical dimensions, which were either printed or molded from the same PLA stock material. The cultures exhibited significant differences in plating efficiency, migration trajectory, and morphology at early times stemming from attempts by the cells to minimize cytoplasm deformation as they attempt to adhere on the printed surfaces. Even though biomineralization without dexamethasone induction was observed in all cultures at later times, different gene expression patterns were observed on the two surfaces. (Osteogenic markers were upregulated on molded substrates, while odontogenic markers were upregulated on the FDM printed surfaces.) Our results clearly indicate that the method of manufacturing is an important consideration in comparing devices, which come in contact with living tissues.

2.
Angew Chem Int Ed Engl ; 54(49): 14690-5, 2015 Dec 01.
Article En | MEDLINE | ID: mdl-26447456

Dibromobutadiyne is an extremely unstable compound that explodes at room temperature, even under inert atmosphere. This instability has limited the studies of dibromobutadiyne almost entirely to spectroscopic characterization. Here we report an approach to control the reactivity of dibromobutadiyne, via topochemical reaction in cocrystals, leading to the ordered polymer poly(dibromodiacetylene), PBDA. At low temperatures (-15 to -18 °C), dibromobutadiyne can form cocrystals with oxalamide host molecules containing either pyridyl or nitrile side groups, in which halogen bonds align the dibromobutadiyne monomers for topochemical polymerization. The cocrystals with the bis(nitrile) oxalamide host undergo complete ordered polymerization to PBDA, demonstrated by solid-state MAS-NMR, Raman, and optical absorption spectroscopy. Once formed, the polymer can be separated from the host; unlike the monomer, PBDA is stable at room temperature.

3.
J Am Chem Soc ; 133(48): 19274-7, 2011 Dec 07.
Article En | MEDLINE | ID: mdl-22035062

Poly(diiododiacetylene) (PIDA) is a conjugated polymer containing an all-carbon backbone and only iodine atom substituents. Adding a Lewis base to the blue PIDA suspension at room temperature leads first to rapid disappearance of the absorption peaks attributed to PIDA, followed more slowly by release of free iodine. The resulting solid material gives a Raman scattering spectrum consistent with graphitic carbon, and it has a much higher conductivity than PIDA itself. Further investigation has led to the discovery of a previously unreported transformation, the reaction of a Lewis base such as pyrrolidine with a trans-diiodoalkene to form the corresponding alkyne. The generality of this iodine elimination further suggests that reaction of PIDA with Lewis bases dehalogenates the polymer, presenting a new method to prepare carbon nanomaterials at room temperature under very mild conditions.

4.
Chem Cent J ; 5: 12, 2011 Mar 11.
Article En | MEDLINE | ID: mdl-21396112

To better understand the association of contaminant uranium with natural organic matter (NOM) and the fate of uranium in ground water, spectroscopic studies of uranium complexation with catechol were conducted. Catechol provides a model for ubiquitous functional groups present in NOM. Liquid samples were analyzed using Raman, FTIR, and UV-Vis spectroscopy. Catechol was found to polymerize in presence of uranyl ions. Polymerization in presence of uranyl was compared to reactions in the presence of molybdate, another oxyion, and self polymerization of catechol at high pH. The effect of time and dissolved oxygen were also studied. It was found that oxygen was required for self-polymerization at elevated pH. The potential formation of phenoxy radicals as well as quinones was monitored. The benzene ring was found to be intact after polymerization. No evidence for formation of ether bonds was found, suggesting polymerization was due to formation of C-C bonds between catechol ligands. Uranyl was found to form outer sphere complexes with catechol at initial stages but over time (six months) polycatechol complexes were formed and precipitated from solution (forming humic-like material) while uranyl ions remained in solution. Our studies show that uranyl acts as a catalyst in catechol-polymerization.

5.
Chem Cent J ; 3: 10, 2009 Aug 18.
Article En | MEDLINE | ID: mdl-19689800

BACKGROUND: Quantum mechanical calculations were performed on a variety of uranium species representing U(VI), U(V), U(IV), U-carbonates, U-phosphates, U-oxalates, U-catecholates, U-phosphodiesters, U-phosphorylated N-acetyl-glucosamine (NAG), and U-2-Keto-3-doxyoctanoate (KDO) with explicit solvation by H2O molecules. These models represent major U species in natural waters and complexes on bacterial surfaces. The model results are compared to observed EXAFS, IR, Raman and NMR spectra. RESULTS: Agreement between experiment and theory is acceptable in most cases, and the reasons for discrepancies are discussed. Calculated Gibbs free energies are used to constrain which configurations are most likely to be stable under circumneutral pH conditions. Reduction of U(VI) to U(IV) is examined for the U-carbonate and U-catechol complexes. CONCLUSION: Results on the potential energy differences between U(V)- and U(IV)-carbonate complexes suggest that the cause of slower disproportionation in this system is electrostatic repulsion between UO2 [CO3]3(5-) ions that must approach one another to form U(VI) and U(IV) rather than a change in thermodynamic stability. Calculations on U-catechol species are consistent with the observation that UO2(2+) can oxidize catechol and form quinone-like species. In addition, outer-sphere complexation is predicted to be the most stable for U-catechol interactions based on calculated energies and comparison to 13C NMR spectra. Outer-sphere complexes (i.e., ion pairs bridged by water molecules) are predicted to be comparable in Gibbs free energy to inner-sphere complexes for a model carboxylic acid. Complexation of uranyl to phosphorus-containing groups in extracellular polymeric substances is predicted to favor phosphonate groups, such as that found in phosphorylated NAG, rather than phosphodiesters, such as those in nucleic acids.

6.
J Am Chem Soc ; 130(13): 4415-20, 2008 Apr 02.
Article En | MEDLINE | ID: mdl-18335932

Diiodobutadiyne forms cocrystals with bis(pyridyl)oxalamides in which the diyne alignment is near the ideal parameters for topochemical polymerization to the ordered conjugated polymer, poly(diiododiacetylene) (PIDA). Nonetheless, previous efforts to induce polymerization in these samples via heat or irradiation were unsuccessful. We report here the successful ordered polymerization of diiodobutadiyne in these cocrystals, by subjecting them to high external pressure (0.3-10 GPa). At the lower end of the pressure range, the samples contain primarily monomer, as demonstrated by X-ray diffraction studies, but some polymerization does occur, leading to a pronounced color change from colorless to blue and to the development of intense Raman peaks at 962, 1394, and 2055 cm-1, corresponding to the poly(diacetylene). At higher pressures, the samples turn black and contain primarily polymer, as determined by solid-state NMR and Raman spectroscopy. Both density functional theory calculations (B3LYP/LanL2DZ) and comparisons to authentic samples of PIDA have confirmed the data analysis.

...