Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 55
1.
Phys Chem Chem Phys ; 2024 May 29.
Article En | MEDLINE | ID: mdl-38808410

This study investigates the mechanochemical reaction of hydrogen isotope exchange between solid benzoic acid and liquid heavy water. The systematic change of milling conditions revealed that the reaction rate scales with the milling frequency and the mass of the milling balls. The ball size being always the same, faster reactions stem from the use of higher milling frequencies and heavier balls. The kinetic curves are described by a kinetic model that accounts for the statistical, deformational and chemical factors involved in mechanochemical transformations. The results indicate that the reaction is driven by the generation of a new interface area caused by the deformation of the solid reactants.

2.
Angew Chem Int Ed Engl ; 62(33): e202308046, 2023 Aug 14.
Article En | MEDLINE | ID: mdl-37377246

Typically induced by the mechanical processing of powders in ball mills, mechanochemical transformations are considered to result from the application of mechanical force to solid reactants. However, the undeniable deep connection between the dynamic compaction of powders during impacts and the overall transformation degree has yet to be disclosed. In the present work, we show that the square planar bis(dibenzoylmethanato)NiII coordination compound undergoes trimerization when its powder experiences even a single ball impact. Based on systematic experiments with individual ball impacts and analysis by Raman spectroscopy, we provide here quantitative mapping of the transformation in the powder compact and deduce bulk reaction kinetics from multiple individual impacts.

3.
Chem Commun (Camb) ; 59(12): 1629-1632, 2023 Feb 07.
Article En | MEDLINE | ID: mdl-36662170

Using Raman in situ monitoring and mechanochemistry-specific kinetic analysis, we find a correlation between the reaction probability and the Hammett constants in a model mechanochemical reaction of imine formation, indicating that the body of knowledge developed in physical-organic chemistry could be transferable to ball milling reactions in the solid state.

6.
Faraday Discuss ; 241(0): 217-229, 2023 Jan 05.
Article En | MEDLINE | ID: mdl-36149388

Inelastic collisions of the milling media in ball milling provide energy to the reaction mixture required for chemical transformations. However, movement of the milling media also results in physical mixing of reactants, which may enable a chemical reaction too. Separating the two contributions is challenging and gaining a direct insight into the purely mechanochemically driven reactivity is accordingly hindered. Here, we have applied in situ reaction monitoring by Raman spectroscopy to a suitable, purely mechanically activated, chemical reaction and combined kinetic analysis with numerical simulations to access experimentally unattainable milling parameters. The breadth of milling conditions allows us to establish a linear relationship between the reaction rate and the energy dose received by the sample. Consequently, different kinetic profiles in time scale to the same profile when plotted against the energy dose, which increases with the ball mass, the average ball velocity and the frequency of impacts, but decreases with the hardness of the milling media due to more elastic collisions. The fundamental relationship between kinetics and energy input provides the basis for planning and optimisation of mechanochemical reactions and is essential for transferability of mechanochemical reactions across different milling platforms.

7.
Nanomaterials (Basel) ; 12(17)2022 Aug 25.
Article En | MEDLINE | ID: mdl-36079974

With the growing number of flexible electronics applications, environmentally benign ways of mass-producing graphene electronics are sought. In this study, we present a scalable mechanochemical route for the exfoliation of graphite in a planetary ball mill with melamine to form melamine-intercalated graphene nanosheets (M-GNS). M-GNS morphology was evaluated, revealing small particles, down to 14 nm in diameter and 0.4 nm thick. The M-GNS were used as a functional material in the formulation of an inkjet-printable conductive ink, based on green solvents: water, ethanol, and ethylene glycol. The ink satisfied restrictions regarding stability and nanoparticle size; in addition, it was successfully inkjet printed on plastic sheets. Thermal and photonic post-print processing were evaluated as a means of reducing the electrical resistance of the printed features. Minimal sheet resistance values (5 kΩ/sq for 10 printed layers and 626 Ω/sq for 20 printed layers) were obtained on polyimide sheets, after thermal annealing for 1 h at 400 °C and a subsequent single intense pulsed light flash. Lastly, a proof-of-concept simple flexible printed circuit consisting of a battery-powered LED was realized. The demonstrated approach presents an environmentally friendly alternative to mass-producing graphene-based printed flexible electronics.

8.
Beilstein J Org Chem ; 18: 680-687, 2022.
Article En | MEDLINE | ID: mdl-35821698

The direct and selective mechanochemical halogenation of C-H bonds in unsymmetrically substituted azobenzenes using N-halosuccinimides as the halogen source under neat grinding or liquid-assisted grinding conditions in a ball mill has been described. Depending on the azobenzene substrate used, halogenation of the C-H bonds occurs in the absence or only in the presence of PdII catalysts. Insight into the reaction dynamics and characterization of the products was achieved by in situ Raman and ex situ NMR spectroscopy and PXRD analysis. A strong influence of the different 4,4'-substituents of azobenzene on the halogenation time and mechanism was found.

9.
ACS Sustain Chem Eng ; 10(14): 4374-4380, 2022 Apr 11.
Article En | MEDLINE | ID: mdl-35433136

The distinct research areas related to CO2 capture and mechanochemistry are both highly attractive in the context of green chemistry. However, merger of these two areas, i.e., mechanochemical CO2 capture, is still in an early stage of development. Here, the application of biguanidine as an active species for CO2 capture is investigated using both solution-based and liquid-assisted mechanochemical approaches, which lead to a variety of biguanidinium carbonate and bicarbonate hydrogen-bonded networks. We demonstrate that in solution, the formation of the carbonate vs bicarbonate networks can be directed by the organic solvent, while, remarkably, in the liquid-assisted mechanochemical synthesis employing the same solvents as additives, the selectivity in network formation is inversed. In general, our findings support the view of mechanochemistry not only as a sustainable alternative but rather as a complementary strategy to solution-based synthesis.

10.
Acc Chem Res ; 55(9): 1262-1277, 2022 05 03.
Article En | MEDLINE | ID: mdl-35446551

The past two decades have witnessed a rapid emergence of interest in mechanochemistry-chemical and materials reactivity achieved or sustained by the action of mechanical force-which has led to application of mechanochemistry to almost all areas of modern chemical and materials synthesis: from organic, inorganic, and organometallic chemistry to enzymatic reactions, formation of metal-organic frameworks, hybrid perovskites, and nanoparticle-based materials. The recent success of mechanochemistry by ball milling has also raised questions about the underlying mechanisms and has led to the realization that the rational development and effective harnessing of mechanochemical reactivity for cleaner and more efficient chemical manufacturing will critically depend on establishing a mechanistic understanding of these reactions. Despite their long history, the development of such a knowledge framework for mechanochemical reactions is still incomplete. This is in part due to the, until recently, unsurmountable challenge of directly observing transformations taking place in a rapidly oscillating or rotating milling vessel, with the sample being under the continuous impact of milling media. A transformative change in mechanistic studies of milling reactions was recently introduced through the first two methodologies for real-time in situ monitoring based on synchrotron powder X-ray diffraction and Raman spectroscopy. Introduced in 2013 and 2014, the two new techniques have inspired a period of tremendous method development, resulting also in new techniques for mechanistic mechanochemical studies that are based on temperature and/or pressure monitoring, extended X-ray fine structure (EXAFS), and, latest, nuclear magnetic resonance (NMR) spectroscopy. The new technologies available for real-time monitoring have now inspired the development of experimental strategies and advanced data analysis approaches for the identification and quantification of short-lived reaction intermediates, the development of new mechanistic models, as well as the emergence of more complex monitoring methodologies based on two or three simultaneous monitoring approaches. The use of these new opportunities has, in less than a decade, enabled the first real-time observations of mechanochemical reaction kinetics and the first studies of how the presence of additives, or other means of modifying the mechanochemical reaction, influence reaction rates and pathways. These studies have revealed multistep reaction mechanisms, enabled the identification of autocatalysis, as well as identified molecules and materials that have previously not been known or have even been considered not possible to synthesize through conventional approaches. Mechanistic studies through in situ powder X-ray diffraction (PXRD) and Raman spectroscopy have highlighted the formation of supramolecular complexes (for example, cocrystals) as critical intermediates in organic and metal-organic synthesis and have also been combined with isotope labeling strategies to provide a deeper insight into mechanochemical reaction mechanisms and atomic and molecular dynamics under milling conditions. This Account provides an overview of this exciting, rapidly evolving field by presenting the development and concepts behind the new methodologies for real-time in situ monitoring of mechanochemical reactions, outlining key advances in mechanistic understanding of mechanochemistry, and presenting selected studies important for pushing forward the boundaries of measurement techniques, data analysis, and mapping of reaction mechanisms.


Mechanical Phenomena , Spectrum Analysis, Raman , Chemistry Techniques, Synthetic , Powders
11.
Chemistry ; 28(13): e202104409, 2022 Mar 01.
Article En | MEDLINE | ID: mdl-35041251

In recent years, mechanochemistry has enriched the toolbox of synthetic chemists, enabling faster and more sustainable access to new materials and existing products, including active pharmaceutical ingredients (APIs). However, molecular-level understanding of most mechanochemical reactions remains limited, delaying the implementation of mechanochemistry in industrial applications. Herein, we have applied in situ monitoring by Raman spectroscopy to the mechanosynthesis of phenytoin, a World Health Organization (WHO) Essential Medicine, enabling the observation, isolation, and characterization of key molecular-migration intermediates involved in the single-step transformation of benzil, urea, and KOH into phenytoin. This work contributes to the elucidation of a reaction mechanism that has been subjected to a number of interpretations over time and paints a clear picture of how mechanosynthesis can be applied and optimized for the preparation of added-value molecules.


Phenytoin , Spectrum Analysis, Raman , World Health Organization
12.
J Org Chem ; 86(20): 14160-14168, 2021 Oct 15.
Article En | MEDLINE | ID: mdl-34493040

Performing reactions in the solid state offers the largely unexplored possibility of influencing reactivity by manipulating the solid form of the starting reactants. In this work, we explore the use of various solid forms of barbituric acid and its effect on reaction paths and kinetics in a Knoevenagel condensation reaction with vanillin. Modifications of barbituric acid included the use of its desmotrope, a cocrystal, and a salt as the starting reactant. Comparing these reactions with the reaction starting from the commercial keto tautomer of barbituric acid, we find that the reaction kinetics could be accelerated or decelerated, together with a change in the reaction mechanism. Exploring solid forms of reactants can be used as general methodology for manipulating mechanochemical reactivity, further highlighting the benefits of conducting reactions in the solid state, because many of the modifications of solids become unavailable upon dissolution.

13.
J Am Chem Soc ; 143(40): 16332-16336, 2021 10 13.
Article En | MEDLINE | ID: mdl-34582201

Colloidal bismuth therapeutics have been used for hundreds of years, yet remain mysterious. Here we report an X-ray pair distribution function (PDF) study of the solvolysis of bismuth disalicylate, a model for the metallodrug bismuth subsalicylate (Pepto-Bismol). This reveals catalysis by traces of water, followed by multistep cluster growth. The ratio of the two major species, {Bi9O7} and {Bi38O44}, depends on exposure to air, time, and the solvent. The solution-phase cluster structures are of significantly higher symmetry in comparison to solid-state analogues, with reduced off-center Bi3+ displacements. This explains why such "magic-size" clusters can be both stable enough to crystallize and sufficiently labile for further growth.


Bismuth , Organometallic Compounds , Salicylates
14.
Nat Protoc ; 16(7): 3492-3521, 2021 07.
Article En | MEDLINE | ID: mdl-34089023

Solid-state milling has emerged as an alternative, sustainable approach for preparing virtually all classes of compounds and materials. In situ reaction monitoring is essential to understanding the kinetics and mechanisms of these reactions, but it has proved difficult to use standard analytical techniques to analyze the contents of the closed, rapidly moving reaction chamber (jar). Monitoring by Raman spectroscopy is an attractive choice, because it allows uninterrupted data collection from the outside of a translucent milling jar. It complements the already established in situ monitoring based on powder X-ray diffraction, which has limited accessibility to the wider research community, because it requires a synchrotron X-ray source. The Raman spectroscopy monitoring setup used in this protocol consists of an affordable, small portable spectrometer, a laser source and a Raman probe. Translucent reaction jars, most commonly made from a plastic material, enable interaction of the laser beam with the solid sample residing inside the closed reaction jar and collection of Raman-scattered photons while the ball mill is in operation. Acquired Raman spectra are analyzed using commercial or open-source software for data analysis (e.g., MATLAB, Octave, Python, R). Plotting the Raman spectra versus time enables qualitative analysis of reaction paths. This is demonstrated for an example reaction: the formation in the solid state of a cocrystal between nicotinamide and salicylic acid. A more rigorous data analysis can be achieved using multivariate analysis.


Chemistry, Pharmaceutical/methods , Spectrum Analysis, Raman/methods , Algorithms , Calibration , Data Analysis , Polymethyl Methacrylate/chemistry , Silicon/chemistry , Software
15.
ACS Omega ; 5(44): 28663-28672, 2020 Nov 10.
Article En | MEDLINE | ID: mdl-33195919

The mechanochemical preparation of silver sulfadiazine and dantrolene, two marketed active pharmaceutical ingredients, was investigated by in situ Raman spectroscopy. For the first time, the mechanochemical transformations involving highly fluorescent compounds could be studied in situ with a high-resolution Raman system combined with a unique suitable Raman probe. Moreover, the kinetic features of the mechanochemical process were examined by a mathematical model allowing to describe the chemical changes under mechanical stress. This approach is promising both to broaden the scope of Raman in situ investigations that would otherwise be impossible and for process optimization at any scale.

16.
Inorg Chem ; 59(23): 17123-17133, 2020 Dec 07.
Article En | MEDLINE | ID: mdl-33196178

Palladium C-H bond activation in azobenzenes with R1 and R2 at para positions of the phenyl rings (R1 = NMe2, R2 = H (L1); R1 = NMe2, R2 = Cl (L2); R1 = NMe2, R2 = I (L3); R1 = NMe2, R2 = NO2 (L4); R1 = H, R2 = H (L5)) and their monopalladated derivatives, using cis-[PdCl2(DMF)2], has been studied in detail by in situ 1H NMR spectroscopy in N,N-dimethylformamide-d7 (DMF-d7) at room temperature; the same processes have been monitored in parallel via time-resolved UV-vis spectroscopy in DMF at different temperatures and pressures. The final goal was to achieve, from a kinetico-mechanistic perspective, a complete insight into previously reported reactivity results. The results suggest the operation of an electrophilic concerted metalation-deprotonation mechanism for both the mono- and dipalladation reactions, occurring from the coordination compound and the monopalladated intermediates, respectively. The process involves deprotonation of the C-H bond assisted by the presence of a coordinated DMF molecule, which acts as a base. For the first time, NMR monitoring provides a direct evidence of all the intermediate stages: that is, (i) coordination of the azo ligand to the PdII center, (ii) formation of the monopalladated species, and (iii) coordination of the monopalladated species to another PdII unit, which finally result in the (iv) formation of the dipalladated product. All of these species have been identified as intermediates in the dipalladation of azobenzenes, evidenced also by UV-vis spectroscopy time-resolved monitoring. The data also confirm that the cyclopalladation of asymmetrically substituted azobenzenes occurs by two concurrent reaction paths. In order to identify the species observed by NMR and by UV-vis spectroscopy, the final products, intermediates, and the PdII precursor have been prepared and characterized by X-ray diffraction and IR and NMR spectroscopy. DFT calculations have also been used in order to explain the isomerism observed for the isolated complexes, as well to assign their NMR and IR spectra.

17.
Chem Commun (Camb) ; 56(88): 13524-13527, 2020 Nov 05.
Article En | MEDLINE | ID: mdl-32902525

Nucleobases methylated at the glycosidic nitrogen atom achieve DNA-specific self-assembly upon heating in the solid state. We report formation and characterisation of the elusive cocrystal of methylated guanine and methylated cytosine, exhibiting Watson-Crick-type hydrogen bonding, and the crystal structure of 9-methylguanine.


DNA/chemistry , Base Pairing , DNA Methylation , Guanine/analogs & derivatives , Guanine/chemistry , Hydrogen Bonding , Models, Molecular , Nucleic Acid Conformation , Substrate Specificity
18.
Inorg Chem ; 59(17): 12200-12208, 2020 Sep 08.
Article En | MEDLINE | ID: mdl-32806016

Here we describe real-time, in situ monitoring of mechanochemical solid-state metathesis between silver nitrate and the entire series of sodium halides, on the basis of tandem powder X-ray diffraction and Raman spectroscopy monitoring. The mechanistic monitoring reveals that reactions of AgNO3 with NaX (X = Cl, Br, I) differ in reaction paths, with only the reaction with NaBr providing the NaNO3 and AgX products directly. The reaction with NaI revealed the presence of a novel, short-lived intermediate phase, while the reaction with NaCl progressed the slowest through the well-defined Ag2ClNO3 intermediate double salt. While the corresponding iodide and bromide double salts were not observed as intermediates, all three are readily prepared as pure compounds by milling equimolar mixtures of AgX and AgNO3. The in situ observation of reactive intermediates in these simple metathesis reactions reveals a surprising resemblance of reactions involving purely ionic components to those of molecular organic solids and cocrystals. This study demonstrates the potential of in situ reaction monitoring for mechanochemical reactions of ionic compounds as well as completes the application of these techniques to all major compound classes.

19.
Angew Chem Int Ed Engl ; 59(32): 13458-13462, 2020 Aug 03.
Article En | MEDLINE | ID: mdl-32187814

Recent progress in the field of mechanochemistry has expanded the discovery of mechanically induced chemical transformations to several areas of science. However, a general fundamental understanding of how mechanochemical reactions by ball milling occur has remained unreached. For this, we have now implemented in situ monitoring of a mechanochemically induced molecular rearrangement by synchrotron X-ray powder diffraction, Raman spectroscopy, and real-time temperature sensing. The results of this study demonstrate that molecular rearrangements can be accomplished in the solid state by ball milling and how in situ monitoring techniques enable the visualization of changes occurring at the exact instant of a molecular migration. The mechanochemical benzil-benzilic acid rearrangement is the focal point of the study.

20.
Angew Chem Int Ed Engl ; 58(52): 18942-18947, 2019 Dec 19.
Article En | MEDLINE | ID: mdl-31593331

The milling ball is the catalyst. We introduce a palladium-catalyzed reaction inside a ball mill, which makes catalyst powders, ligands, and solvents obsolete. We present a facile and highly sustainable synthesis concept for palladium-catalyzed C-C coupling reactions, exemplarily showcased for the Suzuki polymerization of 4-bromo or 4-iodophenylboronic acid giving poly(para-phenylene). Surprisingly, we observe one of the highest degrees of polymerization (199) reported so far.

...