Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 755(Pt 2): 142455, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33049526

RESUMEN

The feasibility of using biowaste for the production of biochar and its use in agriculture depends on its environmental and economic performance. This paper quantifies environmental and economic life cycle impacts of biochar production and agricultural use in six developing and middle-income countries (Ethiopia, Indonesia, Kenya, Peru, Vietnam, and China). Two types of production technologies typical for rural and urban areas were investigated (flame curtain kiln and gasifier, respectively), and comparisons were made with composting (either home composting or windrow composting) as alternative biowaste management systems. The results showed that both pyrolysis systems performed better than composting and both were expected to bring environmental benefits. The largest environmental benefits were observed for the gasifier systems, mainly due to the substitution of electricity production from the grid. Damage to ecosystems and human health ranged from -1 × 10-7 to -2 × 10-8 species×yr and from -1 × 10-5 to -5 × 10-6 DALY per kg of biowaste treated, respectively (negative scores indicating environmental benefits). However, net economic benefits were only achieved when low-cost simple kilns were used in countries with low labor cost, like Ethiopia, Kenya and Vietnam (net profit from 0.01 to 0.08 USD per kg of biowaste treated). Further, high investment and operating costs and relatively small electricity revenue from substituting the grid electricity resulted in gasifier scenarios being economically unsustainable (net loss from 0.29 to 1.58 USD per kg of biowaste treated). Thus, there are trade-offs between positive environmental impacts for society and net market loss for the individual decision-maker (company or individual farmer) that should be considered when making decisions regarding the implementation of biochar technology in developing and middle-income countries. The use of simple kilns in countries with relatively low labor costs appears to be favorable.


Asunto(s)
Países en Desarrollo , Ecosistema , Agricultura , Carbón Orgánico , China , Etiopía , Humanos , Indonesia , Kenia , Perú , Vietnam
2.
Sci Rep ; 9(1): 11993, 2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31427607

RESUMEN

Most deforested lands in Brazil are occupied by low-productivity cattle ranching. Brazil is the second biggest meat producer worldwide and is projected to increase its agricultural output more than any other country. Biochar has been shown to improve soil properties and agricultural productivity when added to degraded soils, but these effects are context-dependent. The impact of biochar, fertilizer and inoculant on the productivity of forage grasses in Brazil (Brachiaria spp. and Panicum spp.) was investigated from environmental and socio-economic perspectives. We showed a 27% average increase in Brachiaria production over two years but no significant effects of amendment on Panicum yield. Biochar addition also increased the contents of macronutrients, soil pH and CEC. Each hectare amended with biochar saved 91 tonnes of CO2eq through land sparing effect, 13 tonnes of CO2eq sequestered in the soil, equating to U$455 in carbon payments. The costs of biochar production for smallholder farmers, mostly because of labour cost, outweighed the potential benefits of its use. Biochar is 617% more expensive than common fertilizers. Biochar could improve productivity of degraded pasturelands in Brazil if investments in efficient biochar production techniques are used and biochar is subsidized by low emission incentive schemes.


Asunto(s)
Carbón Orgánico , Ambiente , Suelo/química , Agricultura , Algoritmos , Biomasa , Brasil , Ciclo del Carbono , Análisis Costo-Beneficio , Ecosistema , Bosques , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA