Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36297373

RESUMEN

Extensive knowledge related to medicinal characteristics of plants by living in forest or semi-forest habitats and close observations of indigenous communities have led to the discoveries of the genus Lepisanthes and its traditional uses. The genus Lepisanthes is a member of the Sapindaceae family and is found in various regions of the world. Six species of Lepisanthes such as L. alata, L. amoena, L. fruticosa, L. senegalensis, L. rubiginosa, and L. tetraphylla are widely utilized in traditional and folk medicinal systems. They have been used for centuries for the treatment of ailments or symptoms such as pain, dizziness, high fever, frequent passing of watery stool (diarrhea), abscess, and healing of cuts and wounds. Various methodological approaches, mainly in vitro studies, have been employed to further explore the roles of the genus Lepisanthes. The studies identified that the genus Lepisanthes exerts beneficial effects such as antioxidant, antimicrobial, antihyperglycemic, antimalarial, analgesic, and antidiarrheal. However, the summary of the available literature remains inconclusive. This review aims to comprehensively address the botany, traditional uses, phytochemistry, methods, and pharmacological properties of the six commonly used Lepisanthes species. Hence, our review provides a scientific consensus that may be essential in translating the pharmacological properties of the genus Lepisanthes into future novel cost-effective medicines.

2.
EXCLI J ; 19: 1246-1265, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33122975

RESUMEN

Oxidative stress, inflammation and apoptosis are thought as primary mediators of cisplatin-induced hepatotoxicity. The objective of this study was to determine the protective effect of Polygonum minus essential oil in cisplatin-induced hepatotoxicity. A total of forty-two male rats were randomly divided into seven groups: control, cisplatin, ß-caryophyllene 150 mg/kg (BCP), PmEO 100 mg/kg + cisplatin (PmEO100CP), PmEO 200 mg/kg + cisplatin (PmEO200CP), PmEO 400 mg/kg + cisplatin (PmEO400CP) and PmEO 400 mg/kg (PmEO400). Rats in the BCP, PmEO100CP, PmEO200CP, PmEO400CP and PmEO400 group received respective treatment orally for 14 consecutive days prior to cisplatin injection. All animals except for those in the control group and PmEO400 were administered with a single dose of cisplatin (10 mg/kg) intraperitoneally on day 15 and all animals were sacrificed on day 18. PmEO100CP pretreatment protected against cisplatin-induced hepatotoxicity by decreasing CYP2E1 and indicators of oxidative stress including malondialdehyde, 8-OHdG and protein carbonyl which was accompanied by increased antioxidant status (glutathione, glutathione peroxidase, superoxide dismutase and catalase) as compared to cisplatin group. PmEO100CP pretreatment also modulated changes in liver inflammatory markers (TNF-α, IL-1α, IL-1ß, IL-6 and IL-10). PmEO100CP administration also notably reduced cisplatin-induced apoptosis significantly as compared to cisplatin group. In conclusion, our results suggested that P. minus essential oil at a dose of 100 mg/kg may protect against cisplatin-induced hepatotoxicity possibly via inhibition of oxidative stress, inflammation and apoptosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA