Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Cell Biol ; 25(12): 1774-1786, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37957325

RESUMEN

The intricate orchestration of enzymatic activities involving nicotinamide adenine dinucleotide (NAD+) is essential for maintaining metabolic homeostasis and preserving genomic integrity. As a co-enzyme, NAD+ plays a key role in regulating metabolic pathways, such as glycolysis and Kreb's cycle. ADP-ribosyltransferases (PARPs) and sirtuins rely on NAD+ to mediate post-translational modifications of target proteins. The activation of PARP1 in response to DNA breaks leads to rapid depletion of cellular NAD+ compromising cell viability. Therefore, the levels of NAD+ must be tightly regulated. Here we show that exogenous NAD+, but not its precursors, has a direct effect on mitochondrial activity. Short-term incubation with NAD+ boosts Kreb's cycle and the electron transport chain and enhances pyrimidine biosynthesis. Extended incubation with NAD+ results in depletion of pyrimidines, accumulation of purines, activation of the replication stress response and cell cycle arrest. Moreover, a combination of NAD+ and 5-fluorouridine selectively kills cancer cells that rely on de novo pyrimidine synthesis. We propose an integrated model of how NAD+ regulates nucleotide metabolism, with relevance to healthspan, ageing and cancer therapy.


Asunto(s)
Glucólisis , NAD , NAD/metabolismo , Redes y Vías Metabólicas , Genómica , Replicación del ADN
2.
J Control Release ; 361: 115-129, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37532151

RESUMEN

Recent clinical success with Onpattro and cationic ionizable lipid nanoparticle-based mRNA vaccines has rejuvenated research in the design and engineering of broader synthetic cationic vectors for nucleic acid compaction and transfection. However, perturbation of metabolic processes and cytotoxicity are still of concern with synthetic cationic vectors. Here, through an integrated bioenergetic and biomembrane integrity probing in three different human cell lines we reveal the dynamic effect of a library of sequence-defined four-arm oligo(ethanamino)amide transfectant on cell homeostasis, and identify metabolically safe building units over wide concentration ranges. The results show differential effects of the oligo(ethanamino)amide structure of comparable molecular weight on cell energetics. The severity of polycation effect on bioenergetic crisis follows with the length of continuous protonatable diaminoethane motif in the ascending order of glutaryl-triethylene tetramine, succinyl-tetraethylene pentamine and succinyl-pentaethylene hexamine. We further identify oligomeric structures that do not induce bioenergetic crisis even at high concentrations. Finally, transfection studies with a library of polyplexes carrying a reporter gene show no correlation between transfection efficiency and cytotoxicity. These observations demonstrate the usefulness of integrated high-resolution respirometry and plasma membrane integrity probing as a highly sensitive medium-throughput screening strategy for identification and selection of safe building units for transfectant engineering.


Asunto(s)
Amidas , Metabolismo Energético , Humanos , Amidas/química , Línea Celular , Transfección , Polietileneimina/química
3.
Nucleic Acids Res ; 50(17): 9948-9965, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36099415

RESUMEN

Mutations in the lamin A/C gene (LMNA) cause laminopathies such as the premature aging Hutchinson Gilford progeria syndrome (HGPS) and altered lamin A/C levels are found in diverse malignancies. The underlying lamin-associated mechanisms remain poorly understood. Here we report that lamin A/C-null mouse embryo fibroblasts (Lmna-/- MEFs) and human progerin-expressing HGPS fibroblasts both display reduced NAD+ levels, unstable mitochondrial DNA and attenuated bioenergetics. This mitochondrial dysfunction is associated with reduced chromatin recruitment (Lmna-/- MEFs) or low levels (HGPS) of PGC1α, the key transcription factor for mitochondrial homeostasis. Lmna-/- MEFs showed reduced expression of the NAD+-biosynthesis enzyme NAMPT and attenuated activity of the NAD+-dependent deacetylase SIRT1. We find high PARylation in lamin A/C-aberrant cells, further decreasing the NAD+ pool and consistent with impaired DNA base excision repair in both cell models, a condition that fuels DNA damage-induced PARylation under oxidative stress. Further, ATAC-sequencing revealed a substantially altered chromatin landscape in Lmna-/- MEFs, including aberrantly reduced accessibility at the Nampt gene promoter. Thus, we identified a new role of lamin A/C as a key modulator of mitochondrial function through impairments of PGC1α and the NAMPT-NAD+ pathway, with broader implications for the aging process.


Asunto(s)
Lamina Tipo A/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Progeria , Animales , Cromatina/metabolismo , ADN Mitocondrial/metabolismo , Fibroblastos/metabolismo , Humanos , Lamina Tipo A/genética , Ratones , Mitocondrias/metabolismo , NAD/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Progeria/metabolismo , Sirtuina 1/genética
4.
Cell Death Differ ; 27(3): 1134-1153, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31409894

RESUMEN

Autophagy is an evolutionarily conserved process that captures aberrant intracellular proteins and/or damaged organelles for delivery to lysosomes, with implications for cellular and organismal homeostasis, aging and diverse pathologies, including cancer. During cancer development, autophagy may play both tumour-supporting and tumour-suppressing roles. Any relationships of autophagy to the established oncogene-induced replication stress (RS) and the ensuing DNA damage response (DDR)-mediated anti-cancer barrier in early tumorigenesis remain to be elucidated. Here, assessing potential links between autophagy, RS and DDR, we found that autophagy is enhanced in both early and advanced stages of human urinary bladder and prostate tumorigenesis. Furthermore, a high-content, single-cell-level microscopy analysis of human cellular models exposed to diverse genotoxic insults showed that autophagy is enhanced in cells that experienced robust DNA damage, independently of the cell-cycle position. Oncogene- and drug-induced RS triggered first DDR and later autophagy. Unexpectedly, genetic inactivation of autophagy resulted in RS, despite cellular retention of functional mitochondria and normal ROS levels. Moreover, recovery from experimentally induced RS required autophagy to support DNA synthesis. Consistently, RS due to the absence of autophagy could be partly alleviated by exogenous supply of deoxynucleosides. Our results highlight the importance of autophagy for DNA synthesis, suggesting that autophagy may support cancer progression, at least in part, by facilitating tumour cell survival and fitness under replication stress, a feature shared by most malignancies. These findings have implications for better understanding of the role of autophagy in tumorigenesis, as well as for attempts to manipulate autophagy as an anti-tumour therapeutic strategy.


Asunto(s)
Autofagia , Replicación del ADN , Oncogenes , Estrés Fisiológico , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Camptotecina/farmacología , Línea Celular Tumoral , Replicación del ADN/efectos de los fármacos , Humanos , Modelos Biológicos , Estrés Fisiológico/efectos de los fármacos
5.
Nucleic Acids Res ; 47(22): 11709-11728, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31647095

RESUMEN

The A-type lamins (lamin A/C), encoded by the LMNA gene, are important structural components of the nuclear lamina. LMNA mutations lead to degenerative disorders known as laminopathies, including the premature aging disease Hutchinson-Gilford progeria syndrome. In addition, altered lamin A/C expression is found in various cancers. Reports indicate that lamin A/C plays a role in DNA double strand break repair, but a role in DNA base excision repair (BER) has not been described. We provide evidence for reduced BER efficiency in lamin A/C-depleted cells (Lmna null MEFs and lamin A/C-knockdown U2OS). The mechanism involves impairment of the APE1 and POLß BER activities, partly effectuated by associated reduction in poly-ADP-ribose chain formation. Also, Lmna null MEFs displayed reduced expression of several core BER enzymes (PARP1, LIG3 and POLß). Absence of Lmna led to accumulation of 8-oxoguanine (8-oxoG) lesions, and to an increased frequency of substitution mutations induced by chronic oxidative stress including GC>TA transversions (a fingerprint of 8-oxoG:A mismatches). Collectively, our results provide novel insights into the functional interplay between the nuclear lamina and cellular defenses against oxidative DNA damage, with implications for cancer and aging.


Asunto(s)
Reparación del ADN/genética , Lamina Tipo A/fisiología , Envejecimiento Prematuro/genética , Envejecimiento Prematuro/metabolismo , Animales , Células Cultivadas , Daño del ADN/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Células HEK293 , Humanos , Ratones , Análisis por Micromatrices , Lámina Nuclear/genética , Lámina Nuclear/metabolismo , Estrés Oxidativo/genética , Progeria/genética
6.
Nat Commun ; 10(1): 4635, 2019 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-31604928

RESUMEN

The filamentous bacteriophage fd bind a cell target with exquisite specificity through its few copies of display peptides, whereas nanoparticles functionalized with hundreds to thousands of synthetically generated phage display peptides exhibit variable and often-weak target binding. We hypothesise that some phage peptides in a hierarchical structure rather than in monomeric form recognise and bind their target. Here we show hierarchial forms of a brain-specific phage-derived peptide (herein as NanoLigand Carriers, NLCs) target cerebral endothelial cells through transferrin receptor and the receptor for advanced glycation-end products, cross the blood-brain-barrier and reach neurons and microglial cells. Through intravenous delivery of NLC-ß-secretase 1 (BACE1) siRNA complexes we show effective BACE1 down-regulation in the brain without toxicity and inflammation. Therefore, NLCs act as safe multifunctional nanocarriers, overcome efficacy and specificity limitations in active targeting with nanoparticles bearing phage display peptides or cell-penetrating peptides and expand the receptor repertoire of the display peptide.


Asunto(s)
Bacteriófago M13/metabolismo , Barrera Hematoencefálica/metabolismo , Sistemas de Liberación de Medicamentos , Animales , Bacteriófago M13/química , Portadores de Fármacos , Ligandos , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Nanopartículas , Biblioteca de Péptidos
7.
J Control Release ; 309: 158-172, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31348978

RESUMEN

Acquired resistance to the oncogenic BRAFE600 inhibitor vemurafenib is a major clinical challenge in the treatment of melanoma. Vemurafenib resistance is poorly understood; however, available evidence indicates that reprogrammed mitochondrial metabolism could contribute to the resistance mechanism. Here we show that synthetic polycations, such as polyethylenimines and poly(l-lysine)s, prevent vemurafenib resistance in melanoma cells through induction of mitochondrial bioenergetic crisis. Polycations accumulate to a higher degree in hyperpolarized mitochondria (i.e. mitochondria with greater negative charge) which partly explains greater cellular uptake and mitochondrial accumulation of polycations in melanoma cells compared with epidermal melanocytes. Combined treatment of polycations and vemurafenib diminishes the metabolic flexibility of melanoma cells, making them unable to shift between glycolysis and mitochondrial oxidative phosphorylation according to energy demands. Thus, polycations exert considerable detrimental effects on melanoma cells at concentrations better tolerated by epidermal melanocytes and act synergistically with vemurafenib in effectuating bioenergetic crisis, DNA damage and cell death selectively in melanoma cells. Mechanistic understanding of this synergy could lead to the development of macromolecular and polymer therapeutics with structural attributes that encompass even greater cancer-specific cytotoxicity, and provide strategies for tailor-made combination therapies.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Melanoma/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Polielectrolitos/farmacología , Vemurafenib/farmacología , Línea Celular Tumoral , Metabolismo Energético/efectos de los fármacos , Humanos , Melanoma/metabolismo , Mitocondrias/metabolismo , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/metabolismo
8.
Methods Mol Biol ; 1943: 313-322, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30838625

RESUMEN

A better understanding of the molecular basis of polycation-mediated impairment of mitochondrial bioenergetics might improve the design and synthesis of more efficient and safer polymeric transfectants. Here we utilize the phosphorylation control protocol for studying the effect of polycations on mitochondrial respiration in intact mammalian cells using Oxygraph-2k (OROBOROS). The protocol offers an opportunity to comprehensively monitor mitochondrial respiration through consecutive additions of various cell membrane permeable compounds that alter mitochondrial respiration, thus providing useful information on different states of mitochondrial respiration. Furthermore, we demonstrate how to analyze the data obtained with the phosphorylation control protocol and how to calculate the respiratory flux ratios, which can be used as indicators of respiratory functionality and mitochondrial health.


Asunto(s)
Mitocondrias/efectos de los fármacos , Poliaminas/toxicidad , Línea Celular Tumoral , Permeabilidad de la Membrana Celular/efectos de los fármacos , Respiración de la Célula/efectos de los fármacos , Humanos , Mitocondrias/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Polielectrolitos , Espectrofotometría/instrumentación , Espectrofotometría/métodos , Transfección/métodos
9.
Methods Mol Biol ; 1943: 301-311, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30838624

RESUMEN

Cationic polyplexes and lipoplexes are widely used as artificial systems for nucleic acid delivery into the cells, but they can also induce cell death. Mechanistic understanding of cell toxicity and biological side effects of these cationic entities is essential for optimization strategies and design of safe and efficient nucleic acid delivery systems. Numerous methods are presently available to detect and delineate cytotoxicity and cell death-mediated signals in cell cultures. Activation of caspases is part of the classical apoptosis program and increased caspase activity is therefore a well-established hallmark of programmed cell death. Additional methods to monitor cell-death related signals must, however, also be carried out to fully define the type of cell toxicity in play. These may include methods that detect plasma membrane damage, loss of mitochondrial membrane potential, phosphatidylserine exposure, and cell morphological changes (e.g., membrane blebbing, nuclear changes, cytoplasmic swelling, cell rounding). Here we describe a 96-well format protocol for detection of caspase-3/7 activity in cell lysates, based on a fluorescent caspase-3 assay, combined with a method to simultaneously determine relative protein contents in the individual wells.


Asunto(s)
Poliaminas/toxicidad , Pruebas de Toxicidad/métodos , Transfección/métodos , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Colorantes Fluorescentes/química , Fluorometría/métodos , Humanos , Células Jurkat , Ácidos Nucleicos/genética , Polielectrolitos
10.
Mol Ther ; 25(7): 1476-1490, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28274797

RESUMEN

Polyethylenimine (PEI) is a gold standard polycationic transfectant. However, the highly efficient transfecting activity of PEI and many of its derivatives is accompanied by serious cytotoxic complications and safety concerns at innate immune levels, which impedes the development of therapeutic polycationic nucleic acid carriers in general and their clinical applications. In recent years, the dilemma between transfection efficacy and adverse PEI activities has been addressed from in-depth investigations of cellular processes during transfection and elucidation of molecular mechanisms of PEI-mediated toxicity and translation of these integrated events to chemical engineering of novel PEI derivatives with an improved benefit-to-risk ratio. This review addresses these perspectives and discusses molecular events pertaining to dynamic and multifaceted PEI-mediated cytotoxicity, including membrane destabilization, mitochondrial dysfunction, and perturbations of glycolytic flux and redox homeostasis as well as chemical strategies for the generation of better tolerated polycations. We further examine the effect of PEI and its derivatives on complement activation and interaction with Toll-like receptors. These perspectives are intended to lay the foundation for an improved understanding of interlinked mechanisms controlling transfection and toxicity and their translation for improved engineering of polycation-based transfectants.


Asunto(s)
Membrana Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Transferencia de Gen , Mitocondrias/efectos de los fármacos , Polietileneimina/toxicidad , Animales , Membrana Celular/química , Membrana Celular/metabolismo , Activación de Complemento/efectos de los fármacos , Proteínas del Sistema Complemento/genética , Proteínas del Sistema Complemento/metabolismo , Terapia Genética , Glucólisis , Humanos , Mitocondrias/química , Mitocondrias/inmunología , Mitocondrias/metabolismo , Oxidación-Reducción , Polietileneimina/química , Polietileneimina/farmacocinética , Receptores Toll-Like/genética , Receptores Toll-Like/inmunología
11.
J Control Release ; 246: 88-97, 2017 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-28040639

RESUMEN

We report on a simple robust procedure for synthesis of generation-4 poly-(amidoamine) (PAMAM) dendrimers with a precisely core positioned single sulforhodamine B molecule. The labelled dendrimers exhibited high fluorescent quantum yields where the absorbance and fluorescence spectrum of the fluorophore was not affected by pH and temperature. Since the stoichiometry of the fluorophore to the dendrimer is 1:1, we were able to directly compare uptake kinetics, the mode of uptake, trafficking and safety of dendrimers of different end-terminal functionality (carboxylated vs. pyrrolidonated) by two phenotypically different human endothelial cell types (the human brain capillary endothelial cell line hCMEC/D3 and human umbilical vein endothelial cells), and without interference of the fluorophore in uptake processes. The results demonstrate comparable uptake kinetics and a predominantly clathrin-mediated endocytotic mechanism, irrespective of dendrimer end-terminal functionality, where the majority of dendrimers are directed to the endo-lysosomal compartments in both cell types. A minor fraction of dendrimers, however, localize to endoplasmic reticulum and the Golgi apparatus, presumably through the recycling endosomes. In contrast to amino-terminated PAMAM dendrimers, we confirm safety of carboxylic acid- and pyrrolidone-terminated PAMAM dendrimers through determination of cell membrane integrity and comprehensive respiratory profiling (measurements of mitochondrial oxidative phosphorylation and determination of its coupling efficiency). Our dendrimer core-labelling approach could provide a new conceptual basis for improved understanding of dendrimer performance within biological settings.


Asunto(s)
Dendrímeros/análisis , Células Endoteliales/citología , Colorantes Fluorescentes/análisis , Rodaminas/análisis , Línea Celular , Dendrímeros/química , Dendrímeros/metabolismo , Células Endoteliales/metabolismo , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Metaboloma , Imagen Óptica , Rodaminas/química , Rodaminas/metabolismo
12.
Sci Rep ; 6: 37966, 2016 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-27892499

RESUMEN

Viruses from the third domain of life, Archaea, exhibit unusual features including extreme stability that allow their survival in harsh environments. In addition, these species have never been reported to integrate into human or any other eukaryotic genomes, and could thus serve for exploration of novel medical nanoplatforms. Here, we selected two archaeal viruses Sulfolobus monocaudavirus 1 (SMV1) and Sulfolobus spindle shaped virus 2 (SSV2) owing to their unique spindle shape, hyperthermostable and acid-resistant nature and studied their interaction with mammalian cells. Accordingly, we followed viral uptake, intracellular trafficking and cell viability in human endothelial cells of brain (hCMEC/D3 cells) and umbilical vein (HUVEC) origin. Whereas SMV1 is efficiently internalized into both types of human cells, SSV2 differentiates between HUVECs and hCMEC/D3 cells, thus opening a path for selective cell targeting. On internalization, both viruses localize to the lysosomal compartments. Neither SMV1, nor SSV2 induced any detrimental effect on cell morphology, plasma membrane and mitochondrial functionality. This is the first study demonstrating recognition of archaeal viruses by eukaryotic cells which provides good basis for future exploration of archaeal viruses in bioengineering and development of multifunctional vectors.


Asunto(s)
Virus de Archaea/fisiología , Células Endoteliales/virología , Virus de Archaea/patogenicidad , Encéfalo/citología , Colorantes Fluorescentes/química , Colorantes Fluorescentes/farmacocinética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Lisosomas/virología , Compuestos Orgánicos/química , Compuestos Orgánicos/farmacocinética , Fosforilación Oxidativa , Sulfolobus/virología , Virión/química
13.
Biomacromolecules ; 16(7): 2119-26, 2015 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-26053306

RESUMEN

Poly(L-lysine)s (PLLs), and related derivatives, have received considerable attention as nonviral vectors. High molecular weight PLLs (H-PLLs) are superior transfectants compared with low Mw PLLs (L-PLLs), but suggested to be more cytotoxic. Through a pan-integrated metabolomic approach using Seahorse XF technology, we studied the impact of PLL size on cellular bioenergetic processes in two human cell lines. In contrast to L-PLLs (1-5 kDa), H-PLLs (15-30 kDa) were more detrimental to both mitochondrial oxidative phosphorylation (OXPHOS) and glycolytic activity resulting in considerable intracellular ATP depletion, thereby initiating necrotic-type cell death. The cellular differences to polycation sensitivity were further related to the mitochondrial state, where the impact was substantial on cells with hyperpolarized mitochondria. These medium-throughput approaches offer better opportunities for understanding inter-related intracellular and cell type-dependent processes instigating a bioenergetics crisis, thus, aiding selection (from available libraries) and improved design of safer biodegradable polycations for nucleic acid compaction and cell type-specific delivery.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Polilisina/síntesis química , Polilisina/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Glucólisis/efectos de los fármacos , Humanos , Medicare Part A , Metabolómica , Peso Molecular , Fosforilación Oxidativa/efectos de los fármacos , Polilisina/química , Estados Unidos
14.
Mol Oncol ; 9(3): 601-16, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25435281

RESUMEN

Both Myc and Ras oncogenes impact cellular metabolism, deregulate redox homeostasis and trigger DNA replication stress (RS) that compromises genomic integrity. However, how are such oncogene-induced effects evoked and temporally related, to what extent are these kinetic parameters shared by Myc and Ras, and how are these cellular changes linked with oncogene-induced cellular senescence in different cell context(s) remain poorly understood. Here, we addressed the above-mentioned open questions by multifaceted comparative analyses of human cellular models with inducible expression of c-Myc and H-RasV12 (Ras), two commonly deregulated oncoproteins operating in a functionally connected signaling network. Our study of DNA replication parameters using the DNA fiber approach and time-course assessment of perturbations in glycolytic flux, oxygen consumption and production of reactive oxygen species (ROS) revealed the following results. First, overabundance of nuclear Myc triggered RS promptly, already after one day of Myc induction, causing slow replication fork progression and fork asymmetry, even before any metabolic changes occurred. In contrast, Ras overexpression initially induced a burst of cell proliferation and increased the speed of replication fork progression. However, after several days of induction Ras caused bioenergetic metabolic changes that correlated with slower DNA replication fork progression and the ensuing cell cycle arrest, gradually leading to senescence. Second, the observed oncogene-induced RS and metabolic alterations were cell-type/context dependent, as shown by comparative analyses of normal human BJ fibroblasts versus U2-OS sarcoma cells. Third, the energy metabolic reprogramming triggered by Ras was more robust compared to impact of Myc. Fourth, the detected oncogene-induced oxidative stress was due to ROS (superoxide) of non-mitochondrial origin and mitochondrial OXPHOS was reduced (Crabtree effect). Overall, our study provides novel insights into oncogene-evoked metabolic reprogramming, replication and oxidative stress, with implications for mechanisms of tumorigenesis and potential targeting of oncogene addiction.


Asunto(s)
Replicación del ADN/genética , Metabolismo Energético/genética , Genes ras , Estrés Oxidativo/genética , Proteínas Proto-Oncogénicas c-myc/genética , Estrés Fisiológico/genética , Muerte Celular , Línea Celular Tumoral , Proliferación Celular , Daño del ADN , Humanos , Mitocondrias/metabolismo
15.
Biochim Biophys Acta ; 1847(3): 328-342, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25482261

RESUMEN

Polyethylenimines (PEIs) are among the most efficient polycationic non-viral transfectants. PEI architecture and size not only modulate transfection efficiency, but also cytotoxicity. However, the underlying mechanisms of PEI-induced multifaceted cell damage and death are largely unknown. Here, we demonstrate that the central mechanisms of PEI architecture- and size-dependent perturbations of integrated cellular metabolomics involve destabilization of plasma membrane and mitochondrial membranes with consequences on mitochondrial oxidative phosphorylation (OXPHOS), glycolytic flux and redox homeostasis that ultimately modulate cell death. In comparison to linear PEI, the branched architectures induced greater plasma membrane destabilization and were more detrimental to glycolytic activity and OXPHOS capacity as well as being a more potent inhibitor of the cytochrome c oxidase. Accordingly, the branched architectures caused a greater lactate dehydrogenase (LDH) and ATP depletion, activated AMP kinase (AMPK) and disturbed redox homeostasis through diminished availability of nicotinamide adenine dinucleotide phosphate (NADPH), reduced antioxidant capacity of glutathione (GSH) and increased burden of reactive oxygen species (ROS). The differences in metabolic and redox imprints were further reflected in the transfection performance of the polycations, but co-treatment with the GSH precursor N-acetyl-cysteine (NAC) counteracted redox dysregulation and increased the number of viable transfected cells. Integrated biomembrane integrity and metabolomic analysis provides a rapid approach for mechanistic understanding of multifactorial polycation-mediated cytotoxicity, and could form the basis for combinatorial throughput platforms for improved design and selection of safer polymeric vectors.


Asunto(s)
Membrana Celular/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Membranas Mitocondriales/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Polietileneimina/toxicidad , Transfección/métodos , Adenosina Trifosfato/metabolismo , Antioxidantes/metabolismo , Antioxidantes/farmacología , Línea Celular , Membrana Celular/metabolismo , Respiración de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Glutatión/metabolismo , Homeostasis , Humanos , Cinética , Membranas Mitocondriales/metabolismo , Estructura Molecular , Peso Molecular , Oxidación-Reducción , Consumo de Oxígeno/efectos de los fármacos , Polietileneimina/química , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad
16.
Nat Commun ; 5: 5348, 2014 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-25370744

RESUMEN

ARF is a small, highly basic protein that can be induced by oncogenic stimuli and exerts growth-inhibitory and tumour-suppressive activities through the activation of p53. Here we show that, in human melanocytes, ARF is cytoplasmic, constitutively expressed, and required for maintaining low steady-state levels of superoxide under conditions of mitochondrial dysfunction. This mitochondrial activity of ARF is independent of its known autophagic and p53-dependent functions, and involves the evolutionarily conserved acidic motif GHDDGQ, which exhibits weak homology to BCL-2 homology 3 (BH3) domains and mediates interaction with BCL-xL--an important regulator of mitochondrial redox homeostasis. Melanoma-predisposing CDKN2A germline mutations, which affect conserved glycine and aspartate residues within the GHDDGQ motif, impair the ability of ARF to control superoxide production and suppress growth of melanoma cells in vivo. These results reveal an important cell-protective function of ARF that links mitochondrial dysfunction and susceptibility to melanoma.


Asunto(s)
Melanocitos/metabolismo , Melanoma/genética , Enfermedades Mitocondriales/metabolismo , Superóxidos/metabolismo , Proteína p14ARF Supresora de Tumor/metabolismo , Secuencias de Aminoácidos , Respiración de la Célula , Células Cultivadas , Predisposición Genética a la Enfermedad , Humanos , Proteína bcl-X/metabolismo
17.
Adv Genet ; 88: 353-98, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25409612

RESUMEN

One of the major challenges in the field of nucleic acid delivery is the design of delivery vehicles with attributes that render them safe as well as efficient in transfection. To this end, polycationic vectors have been intensely investigated with native polyethylenimines (PEIs) being the gold standard. PEIs are highly efficient transfectants, but depending on their architecture and size they induce cytotoxicity through different modes of cell death pathways. Here, we briefly review dynamic and integrated cell death processes and pathways, and discuss considerations in cell death assay design and their interpretation in relation to PEIs and PEI-based engineered vectors, which are also translatable for the design and studying the safety of other transfectants.


Asunto(s)
Muerte Celular/efectos de los fármacos , Vectores Genéticos/farmacología , Poliaminas , Anoicis/efectos de los fármacos , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Autofagia/efectos de los fármacos , Autofagia/fisiología , Calcio/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Vectores Genéticos/administración & dosificación , Vectores Genéticos/química , Vectores Genéticos/genética , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Nanomedicina/métodos , Necrosis , Polielectrolitos , Polietileneimina/administración & dosificación , Transfección
18.
Adv Healthc Mater ; 3(6): 817-24, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24408356

RESUMEN

A simple and highly safe poly(3-hydroxybutyrate-co-R-3-hydroxyhexanoate) nanoparticulate delivery system that targets different cell types is developed. A sub-cytotoxic level of polyethylenimine coat mediates universal cell targeting. Internalized nanoparticles traffic along endolysosomal compartments, endoplasmic reticulum and the Golgi complex. Nanoparticles have no detrimental effects on cell morphology and respiration.


Asunto(s)
Ácido 3-Hidroxibutírico/química , Caproatos/química , Nanopartículas/química , Polietileneimina/química , Transporte Biológico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Microscopía Confocal , Nanopartículas/metabolismo , Nanopartículas/toxicidad , Fosforilación Oxidativa/efectos de los fármacos , Tamaño de la Partícula , Rodaminas/química , Rodaminas/metabolismo
19.
Biochim Biophys Acta ; 1827(10): 1213-25, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23850549

RESUMEN

Polyethylenimines (PEIs) are highly efficient non-viral transfectants, but can induce cell death through poorly understood necrotic and apoptotic processes as well as autophagy. Through high resolution respirometry studies in H1299 cells we demonstrate that the 25kDa branched polyethylenimine (25k-PEI-B), in a concentration and time-dependent manner, facilitates mitochondrial proton leak and inhibits the electron transport system. These events were associated with gradual reduction of the mitochondrial membrane potential and mitochondrial ATP synthesis. The intracellular ATP levels further declined as a consequence of PEI-mediated plasma membrane damage and subsequent ATP leakage to the extracellular medium. Studies with freshly isolated mouse liver mitochondria corroborated with bioenergetic findings and demonstrated parallel polycation concentration- and time-dependent changes in state 2 and state 4o oxygen flux as well as lowered ADP phosphorylation (state 3) and mitochondrial ATP synthesis. Polycation-mediated reduction of electron transport system activity was further demonstrated in 'broken mitochondria' (freeze-thawed mitochondrial preparations). Moreover, by using both high-resolution respirometry and spectrophotometry analysis of cytochrome c oxidase activity we were able to identify complex IV (cytochrome c oxidase) as a likely specific site of PEI mediated inhibition within the electron transport system. Unraveling the mechanisms of PEI-mediated mitochondrial energy crisis is central for combinatorial design of safer polymeric non-viral gene delivery systems.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Respiración de la Célula/efectos de los fármacos , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Neoplasias Pulmonares/metabolismo , Mitocondrias Hepáticas/metabolismo , Polietileneimina/farmacología , Protones , Adenosina Trifosfato/metabolismo , Animales , Carcinoma de Pulmón de Células no Pequeñas/patología , Muerte Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Transporte de Electrón/efectos de los fármacos , Proteínas del Complejo de Cadena de Transporte de Electrón/antagonistas & inhibidores , Complejo IV de Transporte de Electrones/metabolismo , Metabolismo Energético , Femenino , Humanos , Neoplasias Pulmonares/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Oxidación-Reducción , Fosforilación Oxidativa/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos
20.
Oncotarget ; 4(4): 584-99, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23603840

RESUMEN

Oncogene addiction describes how cancer cells exhibit dependence on single oncogenes to escape apoptosis and senescence. While oncogene addiction constitutes the basis for new cancer treatment strategies targeting individual kinases and pathways activated by oncogenic mutations, the biochemical basis for this addiction is largely unknown. Here we provide evidence for a metabolic rationale behind the addiction to (V600E)BRAF in two malignant melanoma cell lines. Both cell lines display a striking addiction to glycolysis due to underlying dysfunction of oxidative phosphorylation (OXPHOS). Notably, even minor reductions in glycolytic activity lead to increased OXPHOS activity (reversed Warburg effect), however the mitochondria are unable to sustain ATP production. We show that (V600E)BRAF upholds the activity of glycolysis and therefore the addiction to glycolysis de facto becomes an addiction to (V600E)BRAF. Finally, the senescence response associated with inhibition of (V600E)BRAF is rescued by overexpression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), providing direct evidence that oncogene addiction rests on a metabolic foundation.


Asunto(s)
Glucólisis/genética , Melanoma/genética , Melanoma/metabolismo , Fosforilación Oxidativa , Proteínas Proto-Oncogénicas B-raf/genética , Apoptosis/genética , Western Blotting , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Mitocondrias/metabolismo , Mitocondrias/patología , Oncogenes , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/fisiología , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA