Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37425963

RESUMEN

Impairments in social behavior are observed in a range of neuropsychiatric disorders and several lines of evidence have demonstrated that dysfunction of the prefrontal cortex (PFC) plays a central role in social deficits. We have previously shown that loss of neuropsychiatric risk gene Cacna1c that codes for the Cav1.2 isoform of L-type calcium channels (LTCCs) in the PFC result in impaired sociability as tested using the three-chamber social approach test. In this study we aimed to further characterize the nature of the social deficit associated with a reduction in PFC Cav1.2 channels (Cav1.2PFCKO mice) by testing male mice in a range of social and nonsocial tests while examining PFC neural activity using in vivo GCaMP6s fiber photometry. We found that during the first investigation of the social and non-social stimulus in the three-chamber test, both Cav1.2PFCKO male mice and Cav1.2PFCGFP controls spent significantly more time with the social stimulus compared to a non-social object. In contrast, during repeat investigations while Cav1.2PFCWT mice continued to spend more time with the social stimulus, Cav1.2PFCKO mice spent equal amount of time with both social and non-social stimuli. Neural activity recordings paralleled social behavior with increase in PFC population activity in Cav1.2PFCWT mice during first and repeat investigations, which was predictive of social preference behavior. In Cav1.2PFCKO mice, there was an increase in PFC activity during first social investigation but not during repeat investigations. These behavioral and neural differences were not observed during a reciprocal social interaction test nor during a forced alternation novelty test. To evaluate a potential deficit in reward-related processes, we tested mice in a three-chamber test wherein the social stimulus was replaced by food. Behavioral testing revealed that both Cav1.2PFCWT and Cav1.2PFCKO mice showed a preference for food over object with significantly greater preference during repeat investigation. Interestingly, there was no increase in PFC activity when Cav1.2PFCWT or Cav1.2PFCKO first investigated the food however activity significantly increased in Cav1.2PFCWT mice during repeat investigations of the food. This was not observed in Cav1.2PFCKO mice. In summary, a reduction in Cav1.2 channels in the PFC suppresses the development of a sustained social preference in mice that is associated with lack of PFC neuronal population activity that may be related to deficits in social reward.

2.
Nat Commun ; 14(1): 2487, 2023 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-37120443

RESUMEN

Social hierarchies exert a powerful influence on behavior, but the neurobiological mechanisms that detect and regulate hierarchical interactions are not well understood, especially at the level of neural circuits. Here, we use fiber photometry and chemogenetic tools to record and manipulate the activity of nucleus accumbens-projecting cells in the ventromedial prefrontal cortex (vmPFC-NAcSh) during tube test social competitions. We show that vmPFC-NAcSh projections signal learned hierarchical relationships, and are selectively recruited by subordinate mice when they initiate effortful social dominance behavior during encounters with a dominant competitor from an established hierarchy. After repeated bouts of social defeat stress, this circuit is preferentially activated during social interactions initiated by stress resilient individuals, and plays a necessary role in supporting social approach behavior in subordinated mice. These results define a necessary role for vmPFC-NAcSh cells in the adaptive regulation of social interaction behavior based on prior hierarchical interactions.


Asunto(s)
Conducta Social , Interacción Social , Ratones , Animales , Corteza Prefrontal/fisiología , Predominio Social , Núcleo Accumbens
3.
Mol Psychiatry ; 26(3): 955-973, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-30992540

RESUMEN

Social deficits are common in many psychiatric disorders. However, due to inadequate tools for manipulating circuit activity in humans and unspecific paradigms for modeling social behaviors in rodents, our understanding of the molecular and circuit mechanisms mediating social behaviors remains relatively limited. Using human functional neuroimaging and rodent fiber photometry, we identified a mOFC-BLA projection that modulates social approach behavior and influences susceptibility to social anxiety. In humans and knock-in mice with a loss of function BDNF SNP (Val66Met), the functionality of this circuit was altered, resulting in social behavioral changes in human and mice. We further showed that the development of this circuit is disrupted in BDNF Met carriers due to insufficient BDNF bioavailability, specifically during a peri-adolescent timeframe. These findings define one mechanism by which social anxiety may stem from altered maturation of orbitofronto-amygdala projections and identify a developmental window in which BDNF-based interventions may have therapeutic potential.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Polimorfismo de Nucleótido Simple , Adolescente , Amígdala del Cerebelo , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Miedo , Humanos , Ratones
4.
Mol Psychiatry ; 25(10): 2373-2391, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31501511

RESUMEN

Cocaine-associated memories are critical drivers of relapse in cocaine-dependent individuals that can be evoked by exposure to cocaine or stress. Whether these environmental stimuli recruit similar molecular and circuit-level mechanisms to promote relapse remains largely unknown. Here, using cocaine- and stress-primed reinstatement of cocaine conditioned place preference to model drug-associated memories, we find that cocaine drives reinstatement by increasing the duration that mice spend in the previously cocaine-paired context whereas stress increases the number of entries into this context. Importantly, both forms of reinstatement require Cav1.2 L-type Ca2+ channels (LTCCs) in cells of the prelimbic cortex that project to the nucleus accumbens core (PrL→NAcC). Utilizing fiber photometry to measure circuit activity in vivo in conjunction with the LTCC blocker, isradipine, we find that LTCCs drive differential recruitment of the PrL→ NAcC pathway during cocaine- and stress-primed reinstatement. While cocaine selectively activates PrL→NAcC cells prior to entry into the cocaine-paired chamber, a measure that is predictive of duration in that chamber, stress increases persistent activity of this projection, which correlates with entries into the cocaine-paired chamber. Using projection-specific chemogenetic manipulations, we show that PrL→NAcC activity is required for both cocaine- and stress-primed reinstatement, and that activation of this projection in Cav1.2-deficient mice restores reinstatement. These data indicate that LTCCs are a common mediator of cocaine- and stress-primed reinstatement. However, they engage different patterns of behavior and PrL→NAcC projection activity depending on the environmental stimuli. These findings establish a framework to further study how different environmental experiences can drive relapse, and supports further exploration of isradipine, an FDA-approved LTCC blocker, as a potential therapeutic for the prevention of relapse in cocaine-dependent individuals.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Cocaína/farmacología , Cuerpo Estriado/efectos de los fármacos , Lóbulo Frontal/efectos de los fármacos , Memoria/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos , Estrés Psicológico/psicología , Animales , Trastornos Relacionados con Cocaína/prevención & control , Cuerpo Estriado/citología , Lóbulo Frontal/citología , Isradipino/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Núcleo Accumbens/citología , Núcleo Accumbens/efectos de los fármacos
6.
Proc Natl Acad Sci U S A ; 116(52): 26970-26979, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31822612

RESUMEN

Heightened fear and inefficient safety learning are key features of fear and anxiety disorders. Evidence-based interventions for anxiety disorders, such as cognitive behavioral therapy, primarily rely on mechanisms of fear extinction. However, up to 50% of clinically anxious individuals do not respond to current evidence-based treatment, suggesting a critical need for new interventions based on alternative neurobiological pathways. Using parallel human and rodent conditioned inhibition paradigms alongside brain imaging methodologies, we investigated neural activity patterns in the ventral hippocampus in response to stimuli predictive of threat or safety and compound cues to test inhibition via safety in the presence of threat. Distinct hippocampal responses to threat, safety, and compound cues suggest that the ventral hippocampus is involved in conditioned inhibition in both mice and humans. Moreover, unique response patterns within target-differentiated subpopulations of ventral hippocampal neurons identify a circuit by which fear may be inhibited via safety. Specifically, ventral hippocampal neurons projecting to the prelimbic cortex, but not to the infralimbic cortex or basolateral amygdala, were more active to safety and compound cues than threat cues, and activity correlated with freezing behavior in rodents. A corresponding distinction was observed in humans: hippocampal-dorsal anterior cingulate cortex functional connectivity-but not hippocampal-anterior ventromedial prefrontal cortex or hippocampal-basolateral amygdala connectivity-differentiated between threat, safety, and compound conditions. These findings highlight the potential to enhance treatment for anxiety disorders by targeting an alternative neural mechanism through safety signal learning.

7.
Neurobiol Stress ; 5: 37-53, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27981195

RESUMEN

Drug addiction requires associative learning processes that critically involve hippocampal circuits, including the opioid system. We recently found that acute and chronic stress, important regulators of addictive processes, affect hippocampal opioid levels and mu opioid receptor trafficking in a sexually dimorphic manner. Here, we examined whether acute and chronic stress similarly alters the levels and trafficking of hippocampal delta opioid receptors (DORs). Immediately after acute immobilization stress (AIS) or one-day after chronic immobilization stress (CIS), the brains of adult female and male rats were perfusion-fixed with aldehydes. The CA3b region and the dentate hilus of the dorsal hippocampus were quantitatively analyzed by light microscopy using DOR immunoperoxidase or dual label electron microscopy for DOR using silver intensified immunogold particles (SIG) and GABA using immunoperoxidase. At baseline, females compared to males had more DORs near the plasmalemma of pyramidal cell dendrites and about 3 times more DOR-labeled CA3 dendritic spines contacted by mossy fibers. In AIS females, near-plasmalemmal DOR-SIGs decreased in GABAergic hilar dendrites. However, in AIS males, near-plasmalemmal DOR-SIGs increased in CA3 pyramidal cell and hilar GABAergic dendrites and the percentage of CA3 dendritic spines contacted by mossy fibers increased to about half that seen in unstressed females. Conversely, after CIS, near-plasmalemmal DOR-SIGs increased in hilar GABA-labeled dendrites of females whereas in males plasmalemmal DOR-SIGs decreased in CA3 pyramidal cell dendrites and near-plasmalemmal DOR-SIGs decreased hilar GABA-labeled dendrites. As CIS in females, but not males, redistributed DOR-SIGs near the plasmalemmal of hilar GABAergic dendrites, a subsequent experiment examined the acute affect of oxycodone on the redistribution of DOR-SIGs in a separate cohort of CIS females. Plasmalemmal DOR-SIGs were significantly elevated on hilar interneuron dendrites one-hour after oxycodone (3 mg/kg, I.P.) administration compared to saline administration in CIS females. These data indicate that DORs redistribute within CA3 pyramidal cells and dentate hilar GABAergic interneurons in a sexually dimorphic manner that would promote activation and drug related learning in males after AIS and in females after CIS.

8.
Neurobiol Stress ; 1: 174-183, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25729760

RESUMEN

Stress-especially chronic, uncontrollable stress-is an important risk factor for many neuropsychiatric disorders. The underlying mechanisms are complex and multifactorial, but they involve correlated changes in structural and functional measures of neuronal connectivity within cortical microcircuits and across neuroanatomically distributed brain networks. Here, we review evidence from animal models and human neuroimaging studies implicating stress-associated changes in functional connectivity in the pathogenesis of PTSD, depression, and other neuropsychiatric conditions. Changes in fMRI measures of corticocortical connectivity across distributed networks may be caused by specific structural alterations that have been observed in the prefrontal cortex, hippocampus, and other vulnerable brain regions. These effects are mediated in part by glucocorticoids, which are released from the adrenal gland in response to a stressor and also oscillate in synchrony with diurnal rhythms. Recent work indicates that circadian glucocorticoid oscillations act to balance synapse formation and pruning after learning and during development, and chronic stress disrupts this balance. We conclude by considering how disrupted glucocorticoid oscillations may contribute to the pathophysiology of depression and PTSD in vulnerable individuals, and how circadian rhythm disturbances may affect non-psychiatric populations, including frequent travelers, shift workers, and patients undergoing treatment for autoimmune disorders.

9.
Psychoneuroendocrinology ; 42: 146-52, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24636511

RESUMEN

Studies have indicated significant pubertal-related differences in hormonal stress reactivity. We report here that prepubertal (30 days) male rats display a more protracted stress-induced corticosterone response than adults (70 days), despite showing relatively similar levels of adrenocorticotropic hormone (ACTH). Additionally, we show that adrenal expression of the ACTH receptor, melanocortin 2 receptor (Mc2r), is higher in prepubertal compared to adult animals, and that expression of melanocortin receptor accessory protein (Mrap), a molecule that chaperones MC2R to the cell surface, is greater in prepubertal males following stress. Given that these data suggest a pubertal shift in adrenal sensitivity to ACTH, we directly tested this possibility by injecting prepubertal and adult males with 6.25 or 9.375µg/kg of exogenous rat ACTH and measured their hormone levels 30 and 60min post-injection. As these doses resulted in different circulating levels of ACTH at these two ages, we performed regression analyses to assess the relationship between circulating ACTH and corticosterone concentrations. We found no difference between the ages in the correlation between ACTH and corticosterone levels at the 30min time point. However, 60min following the ACTH injection, we found prepubertal rats had significantly higher corticosterone concentrations at lower levels of ACTH compared to adults. These data suggest that prolonged exposure to ACTH leads to greater corticosterone responsiveness prior to puberty, and indicate that changes in adrenal sensitivity to ACTH may, in part, contribute to the protracted hormonal stress response in prepubertal rats.


Asunto(s)
Glándulas Suprarrenales/fisiopatología , Hormona Adrenocorticotrópica/farmacología , Estrés Fisiológico/fisiología , Estrés Psicológico/fisiopatología , Glándulas Suprarrenales/efectos de los fármacos , Hormona Adrenocorticotrópica/sangre , Animales , Corticosterona/sangre , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/fisiopatología , Masculino , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Sistema Hipófiso-Suprarrenal/fisiopatología , Ratas , Ratas Sprague-Dawley , Restricción Física
10.
Dev Psychobiol ; 56(5): 1061-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24374653

RESUMEN

Following a variety of stressors, prepubertal animals display significantly longer hormonal stress responses than adults. Although the mechanisms that mediate this pubertal-related difference in stress reactivity are unclear, previous studies have shown that social interactions are differentially affected by stress in animals before and after puberty. Given the influence of social factors on stress reactivity, we hypothesize the protracted stress-induced hormonal response in prepubertal animals may be in part mediated by aspects of their poststress social environment. We explored this hypothesis by measuring plasma ACTH and corticosterone in prepubertal male rats 15, 30, and 45 min after a 30 min session of restraint stress exposed to one of three social conditions: recovering in the presence of a stressed cage mate; recovering in the presence of a nonstressed cage mate; and recovering in the absence of a cage mate. We report here that although prepubertal and adult animals display different hormonal responses following restraint, the presence or absence of stressed cage mates has little impact on the poststress hormonal response in prepubertal males. We do, however, show that social factors can alter HPA reactivity in prepubertal animals, in that significant hormonal responses are evoked in nonstressed animals exposed to a stressed cage mate, an effect not found in adults. Collectively, these data indicate that although the poststress social environment does not play a role in mediating the protracted hormonal response in prepubertal animals, the social context can significantly influence HPA activation in otherwise unstressed animals prior to puberty.


Asunto(s)
Hormona Adrenocorticotrópica/sangre , Corticosterona/sangre , Medio Social , Estrés Fisiológico/fisiología , Estrés Psicológico/sangre , Testosterona/sangre , Animales , Conducta Animal/fisiología , Sistema Hipotálamo-Hipofisario/fisiopatología , Masculino , Sistema Hipófiso-Suprarrenal/fisiopatología , Ratas , Ratas Sprague-Dawley , Restricción Física , Maduración Sexual/fisiología , Conducta Social , Estrés Psicológico/fisiopatología
11.
Physiol Behav ; 107(1): 104-11, 2012 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-22728428

RESUMEN

Following an acute stressor, pre-adolescent rats exhibit a protracted hormonal response compared to adults, while after repeated exposure to the same stressor (i.e., homotypic stress) prepubertal males fail to habituate like adults. Though the neurobehavioral implications of these changes are unknown, studying pubertal shifts in stress reactivity may help elucidate the mechanisms that underlie the increase in stress-related psychological and physiological disorders often observed during adolescence. Here, we investigated hormonal, behavioral, and neural responses of prepubertal (30d) and adult (77d) male rats before, during, or after acute stress (restraint), homotypic stress (repeated restraint) or heterotypic stress (repeated cold exposure followed by restraint). We found that prepubertal males exhibit prolonged corticosterone responses following acute and heterotypic stress, and higher adrenocorticotropic hormone and corticosterone responses after homotypic stress, compared to adults. Despite these significant age-dependent changes in hormonal responsiveness, we found that struggling behavior during restraint was similar at both ages, such that both prepubertal and adult animals exposed to homotypic stress struggled less than animals exposed to either acute or heterotypic stress. Across these different stress paradigms, we found greater neural activation, as indexed by FOS immunostaining, in the prepubertal compared to adult paraventricular nucleus of the hypothalamus, a nucleus integral for initiating the hormonal stress response. Interestingly, however, we did not find any influence of pubertal development on stress-induced activation of the posterior paraventricular thalamic nucleus, a brain region involved in experience-dependent changes in stress reactivity. Collectively, our data indicate that prepubertal and adult males display divergent hormonal, behavioral, and neural responses following a variety of stressful experiences, as well as a distinct dissociation between hormonal and behavioral reactivity in prepubertal males under homotypic conditions.


Asunto(s)
Hormona Adrenocorticotrópica/metabolismo , Envejecimiento , Conducta Animal/fisiología , Corticosterona/metabolismo , Estrés Psicológico/metabolismo , Estrés Psicológico/fisiopatología , Glándulas Suprarrenales/patología , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Peso Corporal/fisiología , Recuento de Células , Modelos Animales de Enfermedad , Masculino , Proteínas Oncogénicas v-fos/metabolismo , Hipófisis/patología , Radioinmunoensayo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA