Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Geobiology ; 19(4): 405-420, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33934496

RESUMEN

Iron reduction and sulfate reduction often occur simultaneously in anoxic systems, and where that is the case, the molar ratio between the reactions (i.e., Fe/SO42- reduced) influences their impact on water quality and carbon storage. Previous research has shown that pH and the supply of electron donors and acceptors affect that ratio, but it is unclear how their influences compare and affect one another. This study examines impacts of pH and the supply of acetate, sulfate, and goethite on the ratio of iron to sulfate reduction in semi-continuous sediment bioreactors. We examined which parameter had the greatest impact on that ratio and whether the parameter influences depended on the state of each other. Results show that pH had a greater influence than acetate supply on the ratio of iron to sulfate reduction, and that the impact of acetate supply on the ratio depended on pH. In acidic reactors (pH 6.0 media), the ratio of iron to sulfate reduction decreased from 3:1 to 2:1 as acetate supply increased (0-1 mM). In alkaline reactors (pH 7.5 media), iron and sulfate were reduced in equal proportions, regardless of acetate supply. Secondly, a comparison of experiments with and without sulfate shows that the extent of iron reduction was greater if sulfate reduction was occurring and that the effect was larger in alkaline reactors than acidic reactors. Thus, the influence of sulfate supply on iron reduction extent also depended on pH and suggests that iron reduction grows more dependent on sulfate reduction as pH increases. Our results compare well to trends in groundwater geochemistry and provide further evidence that pH is a major control on iron and sulfate reduction in systems with crystalline (oxyhydr)oxides. pH not only affects the ratio between the reactions but also the influences of other parameters on that ratio.


Asunto(s)
Agua Subterránea , Hierro , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Sulfatos
2.
Geobiology ; 17(2): 185-198, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30387274

RESUMEN

Methanogenesis and iron reduction play major roles in determining global fluxes of greenhouse gases. Despite their importance, environmental factors that influence their interactions are poorly known. Here, we present evidence that pH significantly influences the balance between each reaction in anoxic environments that contain ferric (oxyhydr)oxide minerals. In sediment bioreactors that contained goethite as a source of ferric iron, both iron reduction and methanogenesis occurred but the balance between them varied significantly with pH. Compared to bioreactors receiving acidic media (pH 6), electron donor oxidation was 85% lower for iron reduction and 61% higher for methanogenesis in bioreactors receiving alkaline media (pH 7.5). Thus, methanogenesis displaced iron reduction considerably at alkaline pH. Geochemistry data collected from U.S. aquifers demonstrate that a similar pattern also exists on a broad spatial scale in natural settings. In contrast, in bioreactors that were not augmented with goethite, clay minerals served as the source of ferric iron and the balance between each reaction did not vary significantly with pH. We therefore conclude that pH can regulate the relative contributions of microbial iron reduction and methanogenesis to carbon fluxes from terrestrial environments. We further propose that the availability of ferric (oxyhydr)oxide minerals influences the extent to which the balance between each reaction is sensitive to pH. The results of this study advance our understanding of environmental controls on microbial methane generation and provide a basis for using pH and the occurrence of ferric minerals to refine predictions of greenhouse gas fluxes.


Asunto(s)
Bacterias/metabolismo , Compuestos Férricos/metabolismo , Compuestos de Hierro/metabolismo , Hierro/metabolismo , Metano/metabolismo , Minerales/metabolismo , Reactores Biológicos , Agua Subterránea , Concentración de Iones de Hidrógeno , Oxidación-Reducción
3.
Ground Water ; 54(3): 406-13, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26284699

RESUMEN

Understanding basic controls on aquifer microbiology is essential to managing water resources and predicting impacts of future environmental change. Previous theoretical and laboratory studies indicate that pH can influence interactions between microorganisms that reduce ferric iron and sulfate. In this study, we test the environmental relevance of this relationship by examining broad-scale geochemical data from anoxic zones of aquifers. We isolated data from the U.S. Geological Survey National Water Information System for 19 principal aquifer systems. We then removed samples with chemical compositions inconsistent with iron- and sulfate-reducing environments and evaluated the relationships between pH and other geochemical parameters using Spearman's rho rank correlation tests. Overall, iron concentration and the iron-sulfide concentration ratio of groundwater share a statistically significant negative correlation with pH (P < 0.0001). These relationships indicate that the significance of iron reduction relative to sulfate reduction tends to increase with decreasing pH. Moreover, thermodynamic calculations show that, as the pH of groundwater decreases, iron reduction becomes increasingly favorable relative to sulfate reduction. Hence, the relative significance of each microbial reaction may vary in response to thermodynamic controls on microbial activity. Our findings demonstrate that trends in groundwater geochemistry across different regional aquifer systems are consistent with pH as a control on interactions between microbial iron and sulfate reduction. Environmental changes that perturb groundwater pH can affect water quality by altering the balance between these microbial reactions.


Asunto(s)
Agua Subterránea , Hierro , Sulfatos , Concentración de Iones de Hidrógeno , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...