Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 112022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36454035

RESUMEN

Background: MicroRNAs (miRNA) and other components contained in extracellular vesicles may reflect the presence of a disease. Lung tissue, sputum, and sera of individuals with idiopathic pulmonary fibrosis (IPF) show alterations in miRNA expression. We designed this study to test whether urine and/or tissue derived exosomal miRNAs from individuals with IPF carry cargo that can promote fibrosis. Methods: Exosomes were isolated from urine (U-IPFexo), lung tissue myofibroblasts (MF-IPFexo), serum from individuals with IPF (n=16) and age/sex-matched controls without lung disease (n=10). We analyzed microRNA expression of isolated exosomes and their in vivo bio-distribution. We investigated the effect on ex vivo skin wound healing and in in vivo mouse lung models. Results: U-IPFexo or MF-IPFexo expressed miR-let-7d, miR-29a-5p, miR-181b-3p and miR-199a-3p consistent with previous reports of miRNA expression obtained from lung tissue/sera from patients with IPF. In vivo bio-distribution experiments detected bioluminescent exosomes in the lung of normal C57Bl6 mice within 5 min after intravenous infusion, followed by distribution to other organs irrespective of exosome source. Exosomes labeled with gold nanoparticles and imaged by transmission electron microscopy were visualized in alveolar epithelial type I and type II cells. Treatment of human and mouse lung punches obtained from control, non-fibrotic lungs with either U-IPFexo or MF-IPFexo produced a fibrotic phenotype. A fibrotic phenotype was also induced in a human ex vivo skin model and in in vivo lung models. Conclusions: Our results provide evidence of a systemic feature of IPF whereby exosomes contain pro-fibrotic miRNAs when obtained from a fibrotic source and interfere with response to tissue injury as measured in skin and lung models. Funding: This work was supported in part by Lester and Sue Smith Foundation and The Samrick Family Foundation and NIH grants R21 AG060338 (SE and MKG), U01 DK119085 (IP, RS, MTC).


Asunto(s)
Exosomas , Fibrosis Pulmonar Idiopática , Nanopartículas del Metal , MicroARNs , Animales , Ratones , Humanos , Oro , Ratones Endogámicos C57BL , MicroARNs/genética , Fibrosis
2.
ACS Omega ; 7(25): 21359-21369, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35785276

RESUMEN

Improved techniques were applied to formulate drugs into dimensional nanostructures, doped "nanovesicles". These nanovesicles are solely composed of self-assembled amphiphilic antiviral agents used for the treatment of viral infections caused by flaviviruses, such as Zika virus. Studies were done to evaluate the effectiveness of the syntheses, formation, and performance under different experimental conditions, and behavior of the drug nanovesicles in vitro and in vivo. These studies demonstrated that assembling the hydrophobic antiviral drug molecules into nanodrugs is a successful technique for the delivery of the therapeutic agents, otherwise difficult to be supplied. Our studies confirmed that this nanodrug preserved and, in many cases, enhanced the embedded cellular activity of the parental free drug molecules, both in vitro and in vivo. This proposed formulation is highly important as it addresses the issue of insolubility and low bioavailabiity of a wide range of highly potent pharmaceutical drugs-not limited to a specific class of antiviral drugs-that are of high demand for the treatment of medical conditions and emerging pathogens.

3.
J Mater Chem B ; 6(34): 5451-5459, 2018 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32254604

RESUMEN

Nanodrugs have been widely investigated for combating the large number of side effects associated with conventional therapeutics. Several investigations of such nanomedicines have demonstrated the profound role of nanoparticle size in therapeutic efficacy. Herein, we report the role of cyclodextrin (CD)-templating on the size and therapeutic properties of rhodamine 6G (R6G) nanoGUMBOS, i.e. nanomaterials derived from a Group of Uniform Materials Based on Organic Salts (GUMBOS). In these studies, templating of nanoGUMBOS using 2-hydroxypropyl-alpha (2-HP-α), 2-hydroxypropyl beta (2-HP-ß), and gamma (γ) cyclodextrin (CD) led to a significant reduction in size and enhanced uniformity as indicated by transmission electron microscopy (TEM) images. In addition, CD-templated nanoGUMBOS remarkably displayed a three to four fold enhancement in toxicity towards cancer cells as compared to nanoGUMBOS without CD-templates, suggesting a significant improvement in therapeutic efficacy. Correlation between size and toxicity suggests that CD-templated nanoparticles of ∼70 to 80 nm produced optimal toxicity. Even more interesting, all investigated nanoGUMBOS displayed no toxicity toward normal cells under examined conditions. Moreover, these nanoGUMBOS display comparable chemotherapeutic toxicity to the parent dye, [R6G][Cl], while also eliminating toxicity towards normal cells, indicating their strong chemotherapeutic potential. The studies outlined here provide further insight into an approach that may be employed for rapid synthesis of size tunable nanodrugs for enhanced chemotherapeutic efficacy.

4.
ACS Cent Sci ; 3(3): 163-175, 2017 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-28386594

RESUMEN

The chronic nature and associated complications of nonhealing wounds have led to the emergence of nanotechnology-based therapies that aim at facilitating the healing process and ultimately repairing the injured tissue. A number of engineered nanotechnologies have been proposed demonstrating unique properties and multiple functions that address specific problems associated with wound repair mechanisms. In this outlook, we highlight the most recently developed nanotechnology-based therapeutic agents and assess the viability and efficacy of each treatment, with emphasis on chronic cutaneous wounds. Herein we explore the unmet needs and future directions of current technologies, while discussing promising strategies that can advance the wound-healing field.

6.
J Colloid Interface Sci ; 463: 29-36, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26513734

RESUMEN

Molecularly imprinted polymers (MIPs) are an important class of selective materials for molecular specific sensors and separations. Molecular imprinting using non-covalent interactions in aqueous conditions still remains a difficult challenge due to interruption of hydrogen-bonding or electrostatic interactions water. Newly developed crosslinking ionic liquids are demonstrated herein to overcome problems of synthesizing aqueous MIPs, adding to previous examples of ionic liquids used as monomers in non-aqueous conditions or used as MIP solvents. Vinylimidazole ionic liquid crosslinkers were synthesized and subsequently explored as matrix supports for fabrication of molecularly imprinted polymeric nanoGUMBOS (nanoparticles derived from a group of uniform materials based on organic salts). Each of the four crosslinkers incorporated a unique functional spacer between the vinylimidazole groups, and the performance of the corresponding molecularly imprinted polymers was evaluated using chiral recognition as the diagnostic. High uptake values for l-tryptophan were found in the 13-87µmol/g range; and chiral recognition was determined via binding ratios of l-tryptophan over d-tryptophan that ranged from 5:1 to 13:1 for polymers made using different crosslinkers. Not only are these materials good for chiral recognition, but the results highlight the utility of these materials for imprinting aqueous templates such as biological targets for theranostic agents.

7.
J Colloid Interface Sci ; 446: 163-9, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25666457

RESUMEN

Over the past several years, nanomaterials derived from a group of uniform materials based on organic salts (GUMBOS) have been introduced into the scientific literature involving many analytical, biological, and technological applications. In this regard, these nanoGUMBOS have been shown to display a number of unique properties including fluorescence, magnetism, tumor targeting, and optoelectronic. To date, however, little focus has been placed on developing and refining approaches for generation of size-controlled nanoGUMBOS from GUMBOS building blocks. Herein, we describe a systematic effort to define various strategies for the production of well-defined nanoGUMBOS. Specifically, we describe methods based on (i) sonochemical, (ii) microwave-assisted, (iii) cyclodextrin-assisted, and (iv) surfactant-assisted syntheses of nanoGUMBOS, evaluating the efficiency of each technique in controlling the size, sphericity, and uniformity of nanoGUMBOS produced. The effect of systematic variation in experimental parameters such as concentration, cation-to-anion ratio, as well as presence and type of template introduced for formation of nanoGUMBOS is also investigated.


Asunto(s)
Ciclodextrinas/química , Nanopartículas/química , Compuestos Orgánicos/química , Sales (Química)/química , Tensoactivos/química , Fluorescencia , Microscopía Fluorescente , Microondas , Propiedades de Superficie
8.
Photochem Photobiol Sci ; 13(9): 1270-80, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24976521

RESUMEN

A new kind of material called nanoGUMBOS, comprised entirely of cations and anions, has been developed by pairing various functional ions that exhibit fluorescence activity with biocompatible ions, in a process very much akin to that employed in ionic liquid chemistry. In the present study, spectral and biological properties of NIR absorbing nanoGUMBOS were evaluated using electron microscopy, dynamic light scattering, absorbance, thermal imaging, and live/dead fluorescence assays in conjunction with malignant MDA-MB-231 and non-malignant HS-578-BST epithelial human breast cells. The primary focus of this study was to maximize heat generation using NIR laser irradiation and minimize non-specific cytotoxicity using biocompatible constituent ions (e.g. amino acids, vitamins, or organic acids). Concurrently, in order to generate highly responsive nanomaterials for NIR-laser-triggered hyperthermia, optimization of the nanoparticle size, shape, and uniformity was carried out. Evaluation of data from hyperthermal studies of NIR absorbing nanoGUMBOS shows that these materials can achieve temperatures above the threshold for killing cancerous cells. Additionally, in vitro cell based assays demonstrated their promising hyperthermal effects on cancer derived epithelial cells.


Asunto(s)
Nanoestructuras/química , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Femenino , Ácido Fólico/química , Humanos , Hipertermia Inducida , Rayos Láser , Microscopía Fluorescente , Nanoestructuras/toxicidad
9.
Appl Spectrosc ; 68(3): 340-52, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24666951

RESUMEN

The photothermal properties of several near-infrared-absorbing nanoparticles derived from group of uniform materials based on organic salts (GUMBOS) and composed of cationic dyes coupled with biocompatible anions are evaluated. These nanoparticles were synthesized using a reprecipitation method performed at various pH values: 2.0, 5.0, 7.0, 9.0, and 11.0. The cations for the nanoparticles derived from GUMBOS (nanoGUMBOS), [1048] and [1061], have absorbance maxima at wavelengths overlapping with human soft tissue absorbance minima. Near-infrared-absorbing nanoGUMBOS excited with a 1064 nm continuous laser led to heat generation, with an average temperature increase of 20.4 ± 2.7 °C. Although the [1061][Deoxycholate] nanoGUMBOS generated the highest temperature increase (23.7 ± 2.4 °C), it was the least photothermally efficient compound (13.0%) due to its relatively large energy band gap of 0.892 eV. The more photothermally efficient compound [1048][Ascorbate] (64.4%) had a smaller energy band gap of 0.861 eV and provided an average photothermal temperature increase of 21.0 ± 2.1 °C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...