Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1362722, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646634

RESUMEN

Date palm cultivation has thrived in the Gulf Cooperation Council region since ancient times, where it represents a vital sector in agricultural and socio-economic development. However, climate change conditions prevailing for decades in this area, next to rarefication of rain, hot temperatures, intense evapotranspiration, rise of sea level, salinization of groundwater, and intensification of cultivation, contributed to increase salinity in the soil as well as in irrigation water and to seriously threaten date palm cultivation sustainability. There are also growing concerns about soil erosion and its repercussions on date palm oases. While several reviews have reported on solutions to sustain date productivity, including genetic selection of suitable cultivars for the local harsh environmental conditions and the implementation of efficient management practices, no systematic review of the desertic plants' below-ground microbial communities and their potential contributions to date palm adaptation to climate change has been reported yet. Indeed, desert microorganisms are expected to address critical agricultural challenges and economic issues. Therefore, the primary objectives of the present critical review are to (1) analyze and synthesize current knowledge and scientific advances on desert plant-associated microorganisms, (2) review and summarize the impacts of their application on date palm, and (3) identify possible gaps and suggest relevant guidance for desert plant microbes' inoculation approach to sustain date palm cultivation within the Gulf Cooperation Council in general and in Qatar in particular.

2.
J Environ Manage ; 351: 119926, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154226

RESUMEN

This study investigates-for the first time-the synthesis of a novel Ca-rich biochar (N-Ca-B) and its potential use for phosphorus (P) recovery from both synthetic solutions (SS) and treated urban wastewater (TUW) in a continuous stirring tank reactor (CSTR) mode. The novel biochar was synthesized by pyrolysis at 900 °C of a mixture composed of three different materials: animal biomass (poultry manure; PM), lignocellulosic waste (date palm fronds; DPFs), and abundant mineral waste (waste marble powder; WMP). Characterization of N-Ca-B showed that it has good textural properties: well-developed porosity, and high specific surface area. Furthermore, high calcium hydroxide (Ca(OH)2) and calcium oxides (CaO) nanoparticle loads were observed on the biochar surface. The dynamic CSTR assays indicated that the P recovery efficiency mainly depended on the biochar mass, P influent concentration, and, especially, the Ca content of the feeding solution. Owing to its richness in Ca cations, TUW exhibited the highest adsorbed P amount (109.2 mg g-1), i.e., about 14% larger than the SS. P recovery occurs through precipitation as hydroxyapatite, surface complexation, and electrostatic interactions with positively charged biochar particles. In real-world scenarios, CSTR systems can be applied as a tertiary treatment step in existing wastewater treatment plants (WWTPs). Decanted P-loaded biochar can be used in agriculture as a slow-release fertilizer instead of commercial products.


Asunto(s)
Carbonato de Calcio , Calcio , Animales , Fósforo , Polvos , Carbón Orgánico , Aguas Residuales
3.
J Environ Manage ; 348: 119319, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37857211

RESUMEN

Gas-to-liquid (GTL) sludge is a specific wastewater treatment by-product, which is generated during the industrial process of natural gas conversion to transportation fuels. This least studied sludge is pathogen-free and rich in organic carbon and plant nutrients. Therefore, it can be reused for soil enhancement as a sustainable management strategy to mitigate landfill gas emissions. In this field study, we compared the performance of soil treatments with GTL sludge to the more conventional chemical fertilizers and cow manure compost for the cultivation of cotton under hyperarid conditions. After a complete growing season, GTL sludge application resulted in the enhancement of soil properties and plant growth compared to conventional inputs. As such, there was a significant dose-dependent increase of soil organic matter (4.01% and 4.54%), phosphorus (534 and 1090 mg kg-1), and cumulative lint yield (4.68 and 5.67 t ha-1) for GTL sludge application rates of 1.5% and 3%, respectively. The produced fiber quality was adequate for an upland cotton variety (Gossypium hirsutum var. MAY 344) and appeared more dependent on the prevailing climate conditions than soil treatments. On the other hand, the adverse effects generally related to industrial sludge reuse were not significant and did not affect the designed agro-environmental system. Accordingly, plants grown on GTL sludge-amended soils showed lower antioxidant activity despite significant salinity increase. In addition, the concentrations of detected heavy metals in soil were within the standards' limits, which did not pose environmental issues under the described experimental conditions. Leachate analysis revealed no risks for groundwater contamination with phytotoxic metals, which were mostly retained by the soil matrix. Therefore, recycling GTL sludge as an organic amendment can be a sustainable solution to improve soil quality and lower carbon footprint. To reduce any environmental concerns, an application rate of 1.5% could be provisionally recommended since a two-fold increase in sludge dose did not result in a significant yield improvement.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Suelo/química , Aguas del Alcantarillado/química , Gossypium , Contaminantes del Suelo/análisis , Carbono , Metales Pesados/análisis , Fertilizantes/análisis
4.
Environ Sci Pollut Res Int ; 30(10): 26596-26612, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36369449

RESUMEN

Urban sewage sludge (USS) is increasingly being used as an alternative organic amendment in agriculture. Because USS originates mostly from human excreta, partially metabolized pharmaceuticals have also been considered in risk assessment studies after reuse. In this regard, we investigated the cumulative effect of five annual USS applications on the spread of antibiotic-resistant bacteria (ARB) and their subsequent resistance to toxic metals in two unvegetated soils. Eventually, USS contained bacterial strains resistant to all addressed antibiotics with indices of resistance varying between 0.25 for gentamicin to 38% for ampicillin and azithromycin. Sludge-amended soils showed also the emergence of resistome for all tested antibiotics compared to non-treated controls. In this regard, the increase of sludge dose generally correlated with ARB counts, while soil texture had no influence. On the other hand, the multi-antibiotic resistance (MAR) of 52 isolates selected from USS and different soil treatments was investigated for 10 most prescribed antibiotics. Nine isolates showed significant MAR index (≥ 0.3) and co-resistance to Cd, As and Be as well. However, events including an extreme flash flood and the termination of USS applications significantly disrupted ARB communities in all soil treatments. In any case, this study highlighted the risks of ARB spread in sludge-amended soils and a greater concern with the recent exacerbation of antibiotic overuse following COVID-19 outbreak.


Asunto(s)
COVID-19 , Contaminantes del Suelo , Humanos , Suelo , Aguas del Alcantarillado/microbiología , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Metales , Contaminantes del Suelo/análisis , Antibacterianos/farmacología
5.
Front Plant Sci ; 13: 843465, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35909742

RESUMEN

This study was carried out to investigate the impacts of cyanobacteria (Roholtiella sp.) high-value product extract (HVPE) and water resuspended biomass WRB treatments on bell pepper production using the hydroponic system under greenhouse conditions. Six cyanobacteria treatments (6 ml L-1, 4 ml L-1, and 2 ml L-1 - HVPE, 6 ml L-1, 4 ml L-1, and 2 ml L-1 - WRB, and TR0 as control) were evaluated using the foliar application method. The results showed that foliar application of HVPE with treatments of 2 ml L-1, 4 ml L-1, and 6 ml L-1 produced significantly higher values of physical growth parameters of bell pepper (BP) plants (shoot length, the number of leaves, plant leaf length, plant leaf width, and the diameter of the shoot), SPAD index, yield components (the fruit length, fruit width, the number of fruit per plant, and fresh weight per fruit), biochemical composition [ascorbic acid, phenolic acid, and total soluble solids (TSS)], and the total yield compared to the control group TR0. Also, significant higher values of growth parameters (shoot length, the number of leaves, plant leaf length, plant leaf width, the diameter of the shoot), SPAD index, yield components (the fruit length, fruit width, the number of fruits per plant, and fresh weight per fruit), biochemical composition [ascorbic acid, phenolic acid, and total soluble solids (TSS)], and the total yield were obtained with foliar spraying WRB at 2 ml L-1, 4 ml L-1, and 6 ml L-1 compared to the control group TR0. Consequently, the treated bell pepper with Roholtiella sp. HVPE and WRB were more efficient in enhancing production and chemical constituents compared with the control group.

6.
J Environ Manage ; 297: 113355, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34375225

RESUMEN

Semi-arid agricultural soils have increasingly been subjected to urban sewage sludge (USS) applications due to accelerated soil depletion and shortages in manure supply. Research studies addressing USS reuse have mostly been conducted in cropping systems and focused on changes in topsoil properties of a given texture. Therefore, sludge-soil interactions could be largely influenced by the presence of plants, soil particle composition and depth. In this field study, two agricultural soils (sandy, S and sandy loam, SL) received simultaneously four annual USS applications of 40, 80, and 120 t ha-1 year-1 in absence of vegetation. Outcomes showed the increase of carbon and macronutrients in both soils proportionally to USS dose especially in the topsoil profile (0-20 cm). Subsoil (20-40 cm) was similarly influenced by sludge rates, showing comparable variations of fertility parameters though at significant lower levels. The depth-dependent improvement of soil fertility in both layers enhanced the microbiological properties accordingly, with significant variations in soil SL characterized by a higher clay content than soil S. Besides, positive correlations between increases in sludge dose, salinity, trace metals, and enzyme activities in both soils indicate that excessive sludge doses did not cause soil degradation or biotoxic effects under the described experimental conditions. In particular and despite high geoaccumulation indices of Ni in both soils and profiles, the global concentrations of Cu, Ni, Pb, and Zn were still below threshold levels for contaminated soils. In addition, the maintenance of pH values within neutral range and the increase of organic matter content with respect to control would have further reduced metal availability in amended soils. Therefore, we could closely investigate the effects of texture and depth on the intrinsic resilience of each soil to cope with repetitive USS applications.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Oligoelementos , Agricultura , Metales Pesados/análisis , Aguas del Alcantarillado , Suelo , Contaminantes del Suelo/análisis
7.
Plants (Basel) ; 11(1)2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35009109

RESUMEN

Salinity is one of the abiotic stresses that affect crop growth and productivity in arid and semi-arid regions. Unfortunately, there are few known methods to mitigate the deleterious impacts of salt stress on the development and yield of vegetable crops. Blue-green algae (cyanobacteria) are endowed with the potential to curb the negative impacts of salt stress as they are characterized by biostimulant properties. The present work aimed to investigate the effects of Roholtiella sp. as a foliar extract on the growth characteristics, physiological and biochemical responses of bell pepper (Capsicum annuum L.) plants under varying levels of salinity conditions. A soilless water experiment was carried out in a greenhouse where bell pepper seedlings were grown under five salt concentrations (0, 50, 200, 150, and 200 mM of NaCl). Growth characteristics, pigments content, relative water content, and antioxidant activity (CAT) were determined. Our results showed that growth parameters, relative water content (RWC), chlorophyll a & b concentrations under salinity conditions were negatively affected at the highest concentration (200 mM). Interestingly, the application of Roholtiella sp. foliar extract enhanced the plant growth characteristics as shoot length increased by 17.014%, fresh weight by 39.15%, dry and weight by 31.02%, at various salt treatments. Moreover, chlorophyll a and b increased significantly compared with seedlings sprayed with water. Similarly, RWC exhibited a significant increase (92.05%) compared with plants sprayed with water. In addition, antioxidants activities and accumulation of proline were improved in Roholtella sp. extract foliar sprayed seedlings compared to the plants foliar sprayed with water. Conclusively, at the expiration of our study, the Rohotiella sp. extract-treated plants were found to be more efficient in mitigating the deleterious effects caused by the salinity conditions which is an indication of an enhancement potential of tolerating salt-stressed plants when compared to the control group.

8.
J Environ Qual ; 49(2): 460-471, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33016418

RESUMEN

The agricultural reuse of urban sewage sludge (USS) modifies soil properties depending on sludge quality, management, and pedo-environmental conditions. The aim of this microcosm study was to assess C mineralization and subsequent changes in soil properties after USS addition to two typical Mediterranean soils: sandy (Soil S) and sandy loam (Soil A) at equivalent field rates of 40 t ha-1 (USS-40) and 120 t ha-1 (USS-120). Outcomes proved the biodegradability of USS through immediate CO2 release inside incubation bottles in a dose-dependent manner. Accordingly, the highest rates of daily C emission were recorded with USS-120 (3.7 and 3.9 mg kg-1 d-1 for Soils S and A, respectively) after 84 d of incubation at 25 °C. The addition of USS also improved soil fertility by enhancing soil macronutrients, microbial proliferation, and protease activity. Protease showed significant correlation with N, total organic C, and heterotrophic bacteria, reflecting the biostimulation and bioaugmentation effects of sludge. Soil indices like C/N/P stoichiometry and metabolic quotient (qCO2 ) varied mostly with mineralization rates of C and P in both soils. Despite a significant increase of soil salinity and total heavy metal content (lead, nickel, zinc, and copper) with USS dose, wheat germination was not affected by these changes. Both experimental soils showed intrinsic (Soil A) and incubation-induced (Soil S) phytotoxicities that were alleviated by USS addition. This was likely due to the enhancement of biodegradation and/or retention of phytotoxicants originating from previous land uses. Urban sewage sludge amendments could have applications in soil remediation by reducing the negative effects of allelopathic and/or anthropogenic phytoinhibitors.


Asunto(s)
Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Suelo , Carbono/análisis , Biomarcadores Ambientales , Aguas del Alcantarillado
9.
J Environ Qual ; 49(4): 973-986, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33016480

RESUMEN

Urban sewage sludge (USS) is increasingly applied to agricultural soils, but mixed results have been reported because of variations in reuse conditions. Most field trials have been conducted in cropping systems, which conceal intrinsic soil responses to sludge amendments due to the rhizosphere effect and farming practices. Therefore, the current field study highlights long-term changes in bare soil properties in strict relationship with soil texture and USS dose. Two agricultural soils (loamy sand [LS] and sandy [S]) were amended annually with increasing sludge rates up to 120 t ha-1 yr-1 for 5 yr under unvegetated conditions. Outcomes showed a USS dose-dependent variation of all studied parameters in topsoil samples. Soil salinization was the most significant risk related to excessive USS doses. Total dissolved salts (TDS) in saturated paste extracts reached the highest concentrations of 37.2 and 43.1 g L-1 in S soil and LS soil, respectively, treated with 120 t USS ha-1 yr-1 . This was also reflected by electrical conductivity of the saturated paste extract (ECe ) exceeding 4,000 µS cm-1 in both treatments. As observed for TDS, fertility indicators and bioavailable metals varied with soil texture due to the greater retention capacity of LS soil owing to higher fine fraction content. Soil phytotoxicity was estimated by the seed germination index (GI) calculated for lettuce, alfalfa, oat, and durum wheat. The GI was species dependent, indicating different degrees of sensitivity or tolerance to increasing USS rates. Lettuce germination was significantly affected by changes in soil conditions showing negative correlations with ECe and soluble metals. In contrast, treatment with USS enhanced the GI of wheat, reflecting higher salinity tolerance and a positive effect of sludge on abiotic conditions that control germination in soil. Therefore, the choice of adapted plant species is the key factor for successful cropping trials in sludge-amended soils.


Asunto(s)
Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Suelo , Agricultura , Lactuca , Aguas del Alcantarillado
10.
J Agric Food Chem ; 68(44): 12189-12202, 2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33085897

RESUMEN

Micronutrient deficiencies in global food chains are a significant cause of ill health around the world, particularly in developing countries. Agriculture is the primary source of nutrients required for sound health, and as the population has continued to grow, the agricultural sector has come under pressure to improve crop production, in terms of both quantity and quality, to meet the global demands for food security. The use of engineered nanomaterial (ENM) has emerged as a promising technology to sustainably improve the efficiency of current agricultural practices as well as overall crop productivity. One promising approach that has begun to receive attention is to use ENM as seed treatments to biofortify agricultural crop production and quality. This review highlights the current state of the science for this approach as well as critical knowledge gaps and research needs that must be overcome to optimize the sustainable application of nano-enabled seed fortification approaches.


Asunto(s)
Desnutrición/dietoterapia , Nanoestructuras/química , Semillas/química , Biofortificación , Productos Agrícolas/química , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Alimentos Fortificados/análisis , Humanos , Desnutrición/metabolismo , Micronutrientes/metabolismo , Semillas/crecimiento & desarrollo , Semillas/metabolismo
11.
Arch Microbiol ; 202(10): 2607-2617, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32691102

RESUMEN

Actinomycetales is an order of actinobacteria that have an important role in the decomposition of organic matter. Their abundance and distribution can reflect a good level of soil fertility as well as biological activity. In this research study, actinomycetal diversity in soil was investigated under various field treatments with biowastes. Initially, unvegetated agricultural soil plots of 4 m2 had been annually amended with increasing rates of municipal solid waste compost (MSWC at 40, 80 and 120 t ha-1 year-1) and farmyard manure (FM at 40 and 120 t ha-1 year-1) for eight consecutive years. Control consisted of unamended soil and all treatments were distributed in four randomized complete blocks. At the end of the experimental period, total DNA was extracted from fresh topsoil samples (0-20 cm) then nested PCR-DGGE sequencing method was applied to assess the long-term effect of treatments on the diversity of actinomycetes. Analytical outcomes revealed the presence of ten actinomycetal families with Streptomycetaceae, Pseudonocardiaceae and Nocardioidaceae being the most dominant regardless to changes in experimental conditions. Besides, the long-term accumulation of both biowastes in soil affected the diversity of actinomycetal communities in different ways including contribution, stimulation or inhibition. Interestingly, soil treated with MSWC at an equivalent rate of 40 t ha-1 year-1 was likely to provide optimal growth conditions for major identified genera because it showed the highest actinomycetal diversity as compared to the rest of the treatments.


Asunto(s)
Actinomycetales/clasificación , Actinomycetales/genética , Agricultura/métodos , Biodiversidad , Perfil Genético , Microbiología del Suelo , Estiércol
12.
J Biomed Inform ; 99: 103292, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31557529

RESUMEN

Created in October 2012, Wikidata is a large-scale, human-readable, machine-readable, multilingual, multidisciplinary, centralized, editable, structured, and linked knowledge-base with an increasing diversity of use cases. Here, we raise awareness of the potential use of Wikidata as a useful resource for biomedical data integration and semantic interoperability between biomedical computer systems. We show the data model and characteristics of Wikidata and explain how this database can be automatically processed by users as well as by computer methods and programs. Then, we give an overview of the medical entities and relations provided by the database and how they can be useful for various medical purposes such as clinical decision support.


Asunto(s)
Ontologías Biológicas , Sistemas de Administración de Bases de Datos , Internet , Bases de Datos Factuales , Registros Electrónicos de Salud , Humanos , Multilingüismo , Semántica
13.
Environ Sci Pollut Res Int ; 25(4): 3608-3615, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29164461

RESUMEN

Sewage sludge is increasingly used as an organic amendment to agricultural soils, especially to soils containing little organic matter. However, little is known on the impact of this biowaste on seasonal changes of nickel and cadmium toxicity in a sandy loam soil. Accordingly, the aim of this field-scale study was to evaluate the seasonal phytotoxicity according to Cd, Ni, and dehydrogenase variation in an agricultural soil during two successive annual amendments with increasing amounts of urban sludge (0, 40, 80, and 120 t ha-1 year-1). Sampling was carried out at the end of dry season (EDS) and at the end of wet season (EWS) during 2 years 2012/2013. Sludge application significantly increased the amount of organic matter and dehydrogenase activity in the soil. In order to explain the seasonal variation of Cd and Ni, pH and electrical conductivity were also monitored in this study. The increased rate of sewage sludge addition slightly reduced the pH but soil remained above neutrality. The electrical conductivity which reflects soil salinity was strongly correlated with Cd and Ni content that increased with sludge dose. Salinity and heavy metals were highest at EDS 2013. In addition, soil phytotoxicity testing was performed by the evaluation of lettuce seed germination for 120 h. Although heavy metal content did not generally exceed Tunisian thresholds (3 and 75 mg kg-1 for Cd and Ni, respectively), the seed germination index decreased with sewage sludge dose at all seasons. In general, we observed a significant effect of seasonal variation for all studied parameters. Sewage sludge reuse could be a feasible way to improve soil organic matter but toxicity risks consistently increased with time.


Asunto(s)
Cadmio/toxicidad , Lactuca/efectos de los fármacos , Níquel/toxicidad , Aguas del Alcantarillado/química , Contaminantes del Suelo/toxicidad , Suelo/química , Cadmio/análisis , Germinación/efectos de los fármacos , Lactuca/crecimiento & desarrollo , Níquel/análisis , Salinidad , Estaciones del Año , Contaminantes del Suelo/análisis , Túnez
14.
Nanotoxicology ; 9(2): 172-80, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24716640

RESUMEN

The effect of non-functionalized and amino-functionalized multiwall carbon nanotube (CNT) exposure, as well as the impact of CNT presence on coexistent pesticide accumulation, was investigated in lettuce (Lactuca sativa L.). Lettuce seeds were sown directly into CNT-amended vermiculite (1000 mg L(-1)) to monitor phytotoxicity during germination and growth. During growth, lettuce seedlings were subsequently exposed to chlordane (cis-chlordane [CS], trans-chlordane [TC] and trans-nonachlor [TN]) and p,p'-DDE (all at 100 ng/L) in the irrigation solution for a 19-d growth period. CNT exposure did not significantly influence seed germination (82-96%) or plant growth. Similarly, pesticide exposure had no impact on plant growth, total pigment production or tissue lipid peroxidation. After 19 d, the root content of total chlordane and p,p'-DDE was 390 and 73.8 µg g(-1), respectively; in plants not exposed to CNTs, the shoot levels were 1.58 and 0.40 µg g(-1), respectively. The presence and type of CNT significantly influenced pesticide availability to lettuce seedlings. Non-functionalized CNT decreased the root and shoot pesticide content by 88% and 78%, respectively, but amino-functionalized CNT effects were significantly more modest, with decreases of 57% in the roots and 23% in the shoots, respectively. The presence of humic acid completely reversed the reduced accumulation of pesticides induced by amino-functionalized CNT, likely due to strong competition over adsorption sites on the nanomaterial (NM). These findings have implications for food safety and for the use of engineered NMs in agriculture, especially with leafy vegetables.


Asunto(s)
Aminoácidos/química , Lactuca/metabolismo , Nanocompuestos/toxicidad , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidad , Plaguicidas/farmacocinética , Interacciones Farmacológicas , Exposición a Riesgos Ambientales/efectos adversos , Lactuca/efectos de los fármacos , Tasa de Depuración Metabólica/efectos de los fármacos , Tasa de Depuración Metabólica/fisiología , Nanocompuestos/química , Plantones/efectos de los fármacos , Plantones/fisiología , Relación Estructura-Actividad
15.
Environ Sci Technol ; 47(21): 12539-47, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24079803

RESUMEN

The effect of multiwalled carbon nanotubes (MWCNT) or C60 fullerenes on the uptake of weathered chlordane or DDx (DDT + metabolites) by Cucurbita pepo (zucchini), Zea mays (corn), Solanum lycopersicum (tomato), and Glycine max (soybean) was investigated. The plants were grown in 50 g of soil with weathered chlordane (2150 ng/g) and DDx (118 ng/g) that was amended with 0, 500, 1000, or 5000 mg/kg MWCNT or C60. After 28 d, the root and shoot content of chlordane components and DDx was determined by GC-MS. Zucchini and tomato growth were unaffected by carbon nanomaterial coexposure, although C60 at 500 mg/kg reduced corn and soybean biomass by 36.5-45.0%. Total chlordane content ranged from 1490 (tomato) to 4780 (zucchini) ng; DDx amounts ranged from 77.8 (corn) to 395 ng (zucchini). MWCNT coexposure decreased chlordane and DDx accumulation 21-80% across all crops, depending on species and nanotube concentration. Conversely, C60 had species- and contaminant-specific effects on pesticide uptake, ranging from complete suppression of DDx uptake (corn/tomato) to 34.9% increases in chlordane accumulation (tomato/soybean). The data show that pesticide accumulation varies greatly with crop species and carbon nanomaterial type/concentration. These findings have implications for food safety and for the use of engineered nanomaterials in agriculture.


Asunto(s)
Productos Agrícolas/metabolismo , Fulerenos/química , Insecticidas/metabolismo , Nanotubos de Carbono/química , Contaminantes del Suelo/química , Clordano/química , Clordano/metabolismo , Productos Agrícolas/química , Diclorodifenil Dicloroetileno/química , Diclorodifenil Dicloroetileno/metabolismo , Insecticidas/análisis , Residuos de Plaguicidas , Factores de Tiempo
16.
J Environ Sci (China) ; 22(8): 1218-24, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21179961

RESUMEN

This work aimed to study UV-resistant strains of Pseudomonas aeruginosa, to propose a formulation of the kinetics of secondary treated wastewater disinfection and to underline the influence of suspended solids on the inactivation kinetics of these strains. Some investigations were carried out for the validation of some simulation models, from the simplest, the kinetics model of Chick-Watson reduced to first order, to rather complex models such as multi-kinetic and Collins-Selleck models. Results revealed that the involved processes of UV irradiation were too complex to be approached by a simplified formulation, even in the case of specific strains of microorganisms and the use of nearly constant UV radiation intensity. In fact, the application of Chick-Watson model in its original form is not representative of the kinetics of UV disinfection. Modification, taking into account the speed change during the disinfection process, has not significantly improved results. On the other hand, the application of Collins-Selleck model demonstrates that it was necessary to exceed a least dose of critical radiation to start the process of inactivation. To better explain the process of inactivation, we have assumed that the action of disinfectant on the survival of lonely microorganisms is faster than its action on suspended solids protected or agglomerated to each others. We can assume in this case the existence of two inactivation kinetics during the processes (parallel and independent) of the first-order. For this reason, the application of a new kinetic model by introducing a third factor reflecting the influence of suspended solids in water on disinfection kinetics appeared to be determinant for modeling UV inactivation of P. aeruginosa in secondary treated wastewater.


Asunto(s)
Desinfección/métodos , Material Particulado/química , Rayos Ultravioleta , Eliminación de Residuos Líquidos/métodos , Microbiología del Agua , Agua/química , Cinética , Modelos Biológicos , Pseudomonas aeruginosa/efectos de la radiación
17.
Int J Phytoremediation ; 12(8): 733-44, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21166344

RESUMEN

A hydroponics experiment using hyperaccumulator Thlaspi caerulescens (alpine pennycress) and non-specific accumulator Raphanus sativus (common radish) was conducted to investigate the short-term effect of increasing Cd concentrations (0, 25, 50, 75, 100 microM) on metal uptake, chlorophyll content, antioxidative enzymes, and apoplastic bypass flow. As expected, T. caerulescens generally showed better resistance to metal stress, which was reflected by higher Cd accumulation within plant tissues with no signs of chlorosis, or wilt. Glutathione reductase (GR) and superoxide dismutase (SOD) activities in fresh leaves were monitored as the plant metal-detoxifying response. In general, both plant species exhibited an increase trend of GR activity before declining at 100 microM likely due to excessive levels of phytotoxic Cd. SOD activity exhibited almost a similar variation pattern to GR and decreased also at 100 microM Cd. For both plant species, fluorescent PTS uptake (8-hydroxy-1,3,6-pyrenetrisulphonic acid) increased significantly with metal level in exposure solutions indicating that Cd has a comparable effect to drought or salinity in terms of the gain of relative importance in apoplastic bypass transport under such stress conditions.


Asunto(s)
Cadmio/toxicidad , Glutatión Reductasa/metabolismo , Raphanus/enzimología , Superóxido Dismutasa/metabolismo , Thlaspi/enzimología , Cadmio/metabolismo , Clorofila/metabolismo , Sequías , Glutatión Reductasa/efectos de los fármacos , Glutatión Reductasa/genética , Hidroponía , Hojas de la Planta/enzimología , Raphanus/efectos de los fármacos , Raphanus/crecimiento & desarrollo , Superóxido Dismutasa/efectos de los fármacos , Superóxido Dismutasa/genética , Thlaspi/efectos de los fármacos , Thlaspi/crecimiento & desarrollo
18.
Chemosphere ; 70(1): 135-43, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17686508

RESUMEN

The residual ecotoxicity of long-term bioremediated soils concomitantly spiked with three PAHs at four levels (15, 75, 150, 300 mg Sigma 3 PAHs kg(-1) soil) was evaluated using physico-chemical analyses, solid-phase bioassays and soil microbial activities. The pot-scale bioremediation process consisted of weekly moderate waterings in the presence or absence of sewage sludge compost (SSC) under greenhouse conditions. After 15 months, anthracene and pyrene were almost completely degraded whereas benzo[a]pyrene was still persisting, most apparently in SSC-amended soil treatments. However, no apparent toxic effects of the residual PAHs could be detected. SSC application at 40 t ha(-1) was performed to valorize the biowaste and stimulate PAH biodegradation but caused soil salinization and pH reduction at the end of the bioremediation process. Consequently, SSC-amended soils were characterized by strong phytotoxicity to lettuce and had adverse effects on the ostracod Heterocypris incongruens. Despite the smaller number of culturable bacterial populations in SSC-amended soils, soil enzymatic activities were not affected by the organic amendment and residual PAHs; and the bioremediation efficiency was likely to be more limited by the bioavailability of PAHs rather than by the total number of PAH-degraders.


Asunto(s)
Agricultura , Biodegradación Ambiental , Hidrocarburos Policíclicos Aromáticos/toxicidad , Microbiología del Suelo , Contaminantes del Suelo/toxicidad , Bioensayo , Fenómenos Químicos , Química Física , Recuento de Colonia Microbiana , Lactuca/efectos de los fármacos , Lactuca/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Hidrocarburos Policíclicos Aromáticos/química
19.
Chemosphere ; 65(7): 1153-62, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16725180

RESUMEN

The fate of spiked anthracene, pyrene and benzo[a]pyrene in soil with or without sewage sludge compost was assessed during a 6-month bioremediation process simulating landfarming. Bioassays and physico-chemical analyses were employed to monitor toxicity change in soil samples and elutriates through ten sampling campaigns. Pearson product-moment correlation coefficient was determined to measure the strength of relationship between bioassays and physico-chemical analyses. The PAH dissipation in soil was enhanced after the first water addition, and the remaining amounts at the end of the experiment were positively correlated to the number of benzene rings and the presence of sewage sludge compost. Toxicity of soil elutriates to Daphnia magna was evident at early stages, originating exclusively from sewage sludge compost amendment. The lettuce root elongation was continuously inhibited by elutriates for all the treatments including control soil, probably due to high salinity or to unaddressed leachable phytotoxic compounds that were present in the experimental soil. The newly developed direct solid-phase chronic toxicity test using ostracod (Heterocypris incongruens) succeeded in evaluating the soil-bound PAH toxicity, as PAHs could not be detected in elutriates.


Asunto(s)
Antracenos/toxicidad , Benzo(a)pireno/toxicidad , Pirenos/toxicidad , Aguas del Alcantarillado , Contaminantes del Suelo/toxicidad , Animales , Antracenos/análisis , Antracenos/metabolismo , Benzo(a)pireno/análisis , Benzo(a)pireno/metabolismo , Biodegradación Ambiental , Crustáceos/efectos de los fármacos , Crustáceos/crecimiento & desarrollo , Daphnia/efectos de los fármacos , Fertilizantes , Lactuca/efectos de los fármacos , Lactuca/crecimiento & desarrollo , Metales Pesados/análisis , Metales Pesados/toxicidad , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Pirenos/análisis , Pirenos/metabolismo , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo
20.
Waste Manag Res ; 21(2): 155-60, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12739730

RESUMEN

Magnetic susceptibility was measured for agricultural soils in Mornag area, Tunisia, where the soils were partly amended by manure or compost obtained from municipal solid waste stabilisation ('MSW compost'). Our study indicates that natural non-treated soils and manure-amended soils are always low in magnetic susceptibility, but MSW compost-amended soils show higher values of this parameter. Actually, the increase of magnetic susceptibility shows a direct correspondence with the increasing of the amount of MSW compost added to the soil. According to the magnetic mineralogical investigation carried out by isothermal remanent magnetisation acquisition technique, higher magnetic susceptibility values are depending on an increase in ferromagnetic components such as either magnetite (beta-Fe3O4) or maghemite (gamma-Fe2O3) particles. The growth in content of these ferromagnetic components corresponds to an increase of the concentration of heavy metals in soils, which means that magnetic susceptibility indirectly indicates the concentration of heavy metals in MSW compost-amended soils.


Asunto(s)
Monitoreo del Ambiente/métodos , Magnetismo , Metales Pesados/análisis , Eliminación de Residuos , Agricultura , Conservación de los Recursos Naturales , Estiércol , Metales Pesados/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...