Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Expert Rev Neurother ; 24(6): 597-605, 2024 Jun.
Article En | MEDLINE | ID: mdl-38713485

INTRODUCTION: Essential tremor (ET) is the most frequent movement disorder, affecting up to 5% of adults > 65 years old. In 30-50% of cases, optimal medical management provides insufficient tremor relief and surgical options are considered. Thalamotomy is a time-honored intervention, which can be performed using radiofrequency (RF), stereotactic radiosurgery (SRS), or magnetic resonance-guided focused ultrasounds (MRgFUS). While the latter has received considerable attention in the last decade, SRS has consistently been demonstrated as an effective and well-tolerated option. AREAS COVERED: This review discusses the evidence on SRS thalamotomy for ET. Modern workflows and emerging techniques are detailed. Current outcomes are analyzed, with a specific focus on tremor reduction, complications and radiological evolution of the lesions. Challenges for the field are highlighted. EXPERT OPINION: SRS thalamotomy improves tremor in > 80% patients. The efficacy appears comparable to other modalities, including DBS, RF and MRgFUS. Side effects result mostly from idiosyncratic hyper-responses to radiation, which occur in up to 10% of treatments, are usually self-resolving, and are symptomatic in < 4% of patients. Future research should focus on accumulating more data on bilateral treatments, collecting long-term outcomes, refining targeting, and improving lesion consistency.


Essential Tremor , Radiosurgery , Thalamus , Essential Tremor/surgery , Essential Tremor/therapy , Humans , Radiosurgery/methods , Radiosurgery/trends , Thalamus/surgery
2.
J Neurooncol ; 167(3): 501-508, 2024 May.
Article En | MEDLINE | ID: mdl-38563856

OBJECTIVE: Brain metastases (BM) are associated with poor prognosis and increased mortality rates, making them a significant clinical challenge. Studying BMs can aid in improving early detection and monitoring. Systematic comparisons of anatomical distributions of BM from different primary cancers, however, remain largely unavailable. METHODS: To test the hypothesis that anatomical BM distributions differ based on primary cancer type, we analyze the spatial coordinates of BMs for five different primary cancer types along principal component (PC) axes. The dataset includes 3949 intracranial metastases, labeled by primary cancer types and with six features. We employ PC coordinates to highlight the distinctions between various cancer types. We utilized different Machine Learning (ML) algorithms (RF, SVM, TabNet DL) models to establish the relationship between primary cancer diagnosis, spatial coordinates of BMs, age, and target volume. RESULTS: Our findings revealed that PC1 aligns most with the Y axis, followed by the Z axis, and has minimal correlation with the X axis. Based on PC1 versus PC2 plots, we identified notable differences in anatomical spreading patterns between Breast and Lung cancer, as well as Breast and Renal cancer. In contrast, Renal and Lung cancer, as well as Lung and Melanoma, showed similar patterns. Our ML and DL results demonstrated high accuracy in distinguishing BM distribution for different primary cancers, with the SVM algorithm achieving 97% accuracy using a polynomial kernel and TabNet achieving 96%. The RF algorithm ranked PC1 as the most important discriminating feature. CONCLUSIONS: In summary, our results support accurate multiclass ML classification regarding brain metastases distribution.


Brain Neoplasms , Deep Learning , Machine Learning , Humans , Brain Neoplasms/secondary , Female , Male , Neoplasms/pathology , Algorithms , Middle Aged
3.
Article En | MEDLINE | ID: mdl-38588868

PURPOSE: The present study assesses the safety and efficacy of stereotactic radiosurgery (SRS) versus observation for Koos grade 1 and 2 vestibular schwannoma (VS), benign tumors affecting hearing and neurological function. METHODS AND MATERIALS: This multicenter study analyzed data from Koos grade 1 and 2 VS patients managed with SRS (SRS group) or observation (observation group). Propensity score matching balanced patient demographics, tumor volume, and audiometry. Outcomes measured were tumor control, serviceable hearing preservation, and neurological outcomes. RESULTS: In 125 matched patients in each group with a 36-month median follow-up (P = .49), SRS yielded superior 5- and 10-year tumor control rates (99% CI, 97.1%-100%, and 91.9% CI, 79.4%-100%) versus observation (45.8% CI, 36.8%-57.2%, and 22% CI, 13.2%-36.7%; P < .001). Serviceable hearing preservation rates at 5 and 9 years were comparable (SRS 60.4% CI, 49.9%-73%, vs observation 51.4% CI, 41.3%-63.9%, and SRS 27% CI, 14.5%-50.5%, vs observation 30% CI, 17.2%-52.2%; P = .53). SRS were associated with lower odds of tinnitus (OR = 0.39, P = .01), vestibular dysfunction (OR = 0.11, P = .004), and any cranial nerve palsy (OR = 0.36, P = .003), with no change in cranial nerves 5 or 7 (P > .05). Composite endpoints of tumor progression and/or any of the previous outcomes showed significant lower odds associated with SRS compared with observation alone (P < .001). CONCLUSIONS: SRS management in matched cohorts of Koos grade 1 and 2 VS patients demonstrated superior tumor control, comparable hearing preservation rates, and significantly lower odds of experiencing neurological deficits. These findings delineate the safety and efficacy of SRS in the management of this patient population.

4.
J Neurosurg ; : 1-13, 2024 Feb 16.
Article En | MEDLINE | ID: mdl-38364220

OBJECTIVE: Recent studies have suggested that biologically effective dose (BED) is an important correlate of pain relief and sensory dysfunction after Gamma Knife radiosurgery (GKRS) for trigeminal neuralgia (TN). The goal of this study was to determine if BED is superior to prescription dose in predicting outcomes in TN patients undergoing GKRS as a first procedure. METHODS: This was a retrospective study of 871 patients with type 1 TN from 13 GKRS centers. Patient demographics, pain characteristics, treatment parameters, and outcomes were reviewed. BED was compared with prescription dose and other dosimetric factors for their predictive value. RESULTS: The median age of the patients was 68 years, and 60% were female. Nearly 70% of patients experienced pain in the V2 and/or V3 dermatomes, predominantly on the right side (60%). Most patients had modified BNI Pain Intensity Scale grade IV or V pain (89.2%) and were taking 1 or 2 pain medications (74.1%). The median prescription dose was 80 Gy (range 62.5-95 Gy). The proximal trigeminal nerve was targeted in 77.9% of cases, and the median follow-up was 21 months (range 6-156 months). Initial pain relief (modified BNI Pain Intensity Scale grades I-IIIa) was noted in 81.8% of evaluable patients at a median of 30 days. Of 709 patients who achieved initial pain relief, 42.3% experienced at least one pain recurrence after GKRS at a median of 44 months, with 49.0% of these patients undergoing a second procedure. New-onset facial numbness occurred in 25.3% of patients after a median of 8 months. Age ≥ 63 years was associated with a higher probability of both initial pain relief and maintaining pain relief. A distal target location was associated with a higher probability of initial and long-term pain relief, but also a higher incidence of sensory dysfunction. BED ≥ 2100 Gy2.47 was predictive of pain relief at 30 days and 1 year for the distal target, whereas physical dose ≥ 85 Gy was significant for the proximal target, but the restricted range of BED values in this subgroup could be a confounding factor. A maximum brainstem point dose ≥ 29.5 Gy was associated with a higher probability of bothersome facial numbness. CONCLUSIONS: BED and physical dose were both predictive of pain relief and could be used as treatment planning goals for distal and proximal targets, respectively, while considering maximum brainstem point dose < 29.5 Gy as a potential constraint for bothersome numbness.

...