Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Microb Ecol ; 59(4): 768-75, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-19921327

RESUMEN

When a host organism is infected by a symbiont, the resulting symbiotum has a phenotype distinct from uninfected hosts. Genotypic interactions between the partners may increase phenotypic variation of the host at the population level. Neotyphodium is an asexual, vertically transmitted endophytic symbiont of grasses often existing in hybrid form. Hybridization in Neotyphodium rapidly increases the symbiotum's genomic content and is likely to increase the phenotypic variation of the host. This phenotypic variation is predicted to enhance host performance, especially in stressful environments. We tested this hypothesis by comparing the growth, survival, and resource allocation of hybrid and nonhybrid infected host plants exposed to controlled variation in soil moisture and nutrients. Infection by a hybrid endophyte did not fit our predictions of comparatively higher root and total biomass production under low moisture/low nutrient treatments. Regardless of whether the host was infected by a hybrid or nonhybrid endophyte, both produced significantly higher root/total biomass when both nutrient and moisture were high compared to limited nutrient/moisture treatments. However, infection by hybrid Neotyphodium did result in significantly higher total biomass and host survival compared to nonhybrid infected hosts, regardless of treatment. Endophyte hybridization alters host strategies in response to stress by increasing survival in depauperate habitats and thus, potentially increasing the relative long-term host fitness.


Asunto(s)
Festuca/crecimiento & desarrollo , Festuca/microbiología , Hibridación Genética , Neotyphodium/genética , Microbiología del Suelo , Simbiosis , Biomasa , Neotyphodium/crecimiento & desarrollo , Fenotipo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Suelo/análisis , Estrés Fisiológico
2.
Microb Ecol ; 58(2): 408-13, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19290566

RESUMEN

Most asexual fungal symbionts of grasses in the genus Neotyphodium occurring in nature are of hybrid origin. Most hybrid Neotyphodium species result from interspecific hybridization events between pathogenic Epichloë species or co-occurring non-hybrid Neotyphodium species. Current hypotheses for the prevalence of hybrid Neotyphodium species include reduction of mutation accumulation and increased adaptive response to environmental extremes. We tested the adaptive response hypothesis by characterizing the distribution of uninfected, hybrid, and non-hybrid Neotyphodium endophytes in 24 native Arizona fescue host populations and abiotic parameters at each locality. Infection was high in all host populations (>70%), but the majority of host populations were infected by non-hybrid Neotyphodium (>50% on average). Principal component analysis indicates the frequency of plants infected with hybrid fungi is negatively related to soil nutrients and positively correlated with early spring moisture. Non-hybrid infected hosts are positively associated with soil nutrients and show a complex relationship with soil moisture (negative in early spring moisture, positive with late summer soil moisture). These results suggest the frequency of uninfected, hybrid, and non-hybrid infected plants is related to resource availability and abiotic stress factors. This supports the hypothesis that hybridization in asexual fungal symbionts increases host adaptability to extreme environments.


Asunto(s)
Adaptación Fisiológica , Epichloe/crecimiento & desarrollo , Festuca/microbiología , Neotyphodium/crecimiento & desarrollo , Simbiosis , Arizona , Quimera , Ecosistema , Hibridación Genética , Dinámica Poblacional , Microbiología del Suelo
3.
Microb Ecol ; 52(4): 748-55, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16944342

RESUMEN

Asexual, seedborne endophytic fungi in perennial grasses are often viewed as strong mutualists because fitness of the symbiont and host grass are closely coupled. However, at least for some native grasses, the asexual endophyte, Neotyphodium, acts parasitically, yet remains at high frequencies in natural populations. Most previous studies of Neotyphodium effects on host survival have been short term relative to the long life span of the perennial grass host. We therefore tested the hypothesis that Neotyphodium alters the survival in various life stages and long-term survival of adult native Arizona fescue (Festuca arizonica). To test the former, we planted 40 infected (E+) and 40 uninfected (E-, endophyte removed) seeds from four different maternal plants in the field under ambient conditions. We followed survival of seeds, seedlings, and adult plants over a 5-year period. To test the latter, we determined the infection of 1633 adult plants and followed their survival over the next 5-7 years. E+ seeds did not differ from uninfected seeds in terms of overall survival from seed germination to seedling to adult. However, the shape of the survival curve differed, with E+ plants showing higher mortality in early life stages. E+ adult plants did not differ from E- plants in long-term survival. Survival was generally very high during the study, which included a severe and prolonged drought. Infection by asexual Neotyphodium does not increase survival in early life stages or that of adult plants. Because asexual, vertically transmitted symbionts are predicted by evolutionary theory to be strong mutualists, the persistence of high infection frequencies in natural populations without long-term benefits to the host remains enigmatic. One possible explanation is that the long life span of the perennial host and low seedling recruitment may obscure either the costs or benefits of endophyte infection.


Asunto(s)
Festuca/microbiología , Hypocreales/crecimiento & desarrollo , Poaceae/microbiología , Festuca/crecimiento & desarrollo , Poaceae/crecimiento & desarrollo , Reproducción , Semillas/crecimiento & desarrollo , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA